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Motivation




Contextual Bandit Recap

FRAMEWORK (CONTEXTUAL BANDIT [5, 6, 7]).

Contexts x Actions a Reward y
User / environment Items / ads / Stochastic,
features decisions depends on (z,a)

OBJECTIVE. Maximize expected cumulative reward; balance
exploration/exploitation (UCB [4], TS [8]).



Why Structure? Three Examples

Movie recommendation

Movies share themes; learn category effects v, and action
params 6;. A: single param per category (biased). B:
hierarchical (movie around category). C: multi-category per
movie (our setting).
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Why Structure? Three Examples

Movie recommendation

Movies share themes; learn category effects v, and action
params 6;. A: single param per category (biased). B:
hierarchical (movie around category). C: multi-category per
movie (our setting).

Ad placement (slates)

K~ LM slates but only L items. Parameterize
0, = >, bie e + € to share information via items/positions.

Drug design
Drugs are mixtures; dosage b; o mixes component effects ;.
Enables fast learning across candidates.



Model




Two-Level Graphical Model

Generative process.

W, ~ Q07
0*,2’ | U, ~ PO,i(' ‘ \I,*)a 1€ [K]’
Yi | Xt,0k8, ~ P(- | X504 4,)

© U, = (Yup)e<r € R effect parameters.
O, = (044)i<x € REZ action parameters.

- Structure via missing edges v, ¢ = 6, ;.



Linearity in Effects (Common, Tractable)

Assume known mixing weights b; = (b; ¢)¢<z, and

L
Bui | Wa~ Poa( - | D biether).
=l

Instances.
- Linear Gaussian (closed-form posteriors): ¥, ~N (g, Sy),
9*71' | \I’* NN(ZZ bi7gw*7g,207i), Y;g | Xt,QNN(X;FH,O'z).

- GLM (Laplace approx): same priors, Y; | X;, 60 ~ P in exp.
family with mean f(X,0) (e.g, logistic).



Algorithm




Hierarchical Sampling

Key idea. Sample effects then actions (conditional
independence given ).

Algorithm 1 meTS : Mixed-Effect Thompson Sampling
1. Input: Qo, {Po}i<k; initialize Q1<+ Qo, P1i<+ FPo,
2 fort=1,...,ndo
33 Sample ¥y ~ Qy
4. Foreachie [K], sample ;; ~ P, ;(- | Uy)

5 Ap < argmax;cg) E[Y | Xi; 0]

6
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Observe Y; ~ P(- | Xy;04.4,)
Update Q1 and  {P.1;} using H =
(X1:t—1, Ar:t—1, Y1:e—1)

8: end for




Closed-Form Posteriors: Linear Case

Let Gri = 072 Yoyes,, XeX[, Bri=0"Yyes,, YeXe

Effect posterior Q; = N (jiz, ¥):

K
S =5+ Db ® (Soi+ G
i=1

K
fit = S (2\51/@ +> b ® ((Soi+ Gﬁil)fth_,ilBt’i))'

=1

Action posterior P, ;(- | ¥;) = N (jii, 2e.):

L
S = Tot 4 Gras  fine = Sus(To} D biavre + Bus)-
=1




GLM Case: Laplace Approximation

For action s

log Le3(0) = Y VX[ 0— AX]0)+C(Yy), A=Ff.
ZGSM

MLE and curvature:

,utLAZP = argmax log L4 4( GYF = Z f XZ—M;‘;P XgX;.
KESt i

Approximate L; ~ N (u, (Gi")~') and plug into the linear
formulas with G+ G"?, G™1 B < "



Why Hierarchical Sampling? Complexity

Joint posterior over ©, € RX9: space O(K?2d?), time O(K3d>).
meTS with effects U € RX%: space O((L? + K)d?), time
O((L3 + K)d3).

When K >> L (typical), hierarchical sampling is far cheaper
while retaining cross-action coupling via .



Theory




Main Regret Bound (Linear Case)

Assume o ; = 021y, Sy = 05114, || X¢||3 < k4, and define

Kp = max; ||b;]|3.

Theorem (Informal). For any § € (0, 1),

BR(n) < \/ 2n<RA(n) + RE(n)> log(1/8) + end.

RA: learning actions; RE: learning effects. Both scale with
d, K/L, and prior widths.

Simplified (set k, = kp = 0 = 1):
BR(n) = (5<\/nd (Ko + Lo (1+ 08))).

Lower priors = lower regret; fewer parameters (K, L, d) = easier. 10




Benefits of Structure

- If U, known (og = 0): O(y/ndKo?) (no L term).

- If perfect linear tie (o9 = 0): O(,/ndLa2) (no K term).
- No structure modeled: marginalize ¥; prior width inflates
to o2 + 02, = regret O(y/ndK (03 + 03,)).

When K > L and effects are uncertain (o > o), meTS gains

~ /K/L.
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Proof Sketch

1. Russo&Van Roy decomposition: reduce to bounding
S,

2. Total covariance decomposition with mixing: for T'; = b ® I,
Nt =g + e, T D el B 1 840

3. Control via eigenvalues of T;T'] =< ||b;||31; sum information gains
over rounds.
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Structure Learning




Proxy Structure from Offline Embeddings

Given offline 6; (e.g, MF embeddings), fit GMM with L clusters:

- Cluster centers py,, cOvariances ¥, = effect prior
mean/cov.

- Membership probs = mixing weights b, ,.

Plugs into priors of meTS ; bridges offline representation
learning with online exploration.
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Experiments




Synthetic: Linear Logistic

Linear bandit: K= 100,L=3,d =2 Logistic bandit: K=100,L=3,d =2

3500 1200
3000 meTS—L!n A 1000} — meTS-GLM
meTS-Lin-Fa meTS-GLM-Fa

2500 HierTs 1 800 — meTS-Lin
© 2000} — LinTS ] HierTS
) LinUCB 600F — GLM-TS
2 1500+ £

2001 UCB-GLM
1000 -
500 | 200 - I

0 L L L L O — L L L L
0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Round n Round n

Figure 1: meTS (and factored variant) vs. structure-agnostic baselines
and hierarchical TS with single effect.
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MovielLens

1400 Lineal: bandit:vK = 10(?, L= 5',d =5 350 LogistiF bandit': K= 10'0, L= 5: d=5
1200 1 § 300l — meTS-GLM
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1000 + 4 250 — meTS-Lin
T 800} { 200p —— HierTS
> — GLM-TS
& 600f — meTS-Lin 1 150¢ 1
400 | meTS-Lin-Fa | 100 | _ 1
200 — HierTS o
I — LinTS 1 50¢ |

0 . . . . ol . . .
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Figure 2: Proxy structure via GMM on movie embeddings; meTS wins
under both Gaussian and logistic rewards.
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Conclusion




Conclusion

- Model: actions depend on multiple shared effects.

- Algorithm: meTS with hierarchical TS; closed-form linear
posteriors; Laplace for GLM.

- Theory: regret splits into action+effect learning; shows
structure benefits.

- Practice: competitive and scalable; proxy structures from
offline data.

Limitations: prior/mixing misspecification; beyond-Gaussian
posteriors; learned b; , dynamics.

Extensions: we extended this work to deep hierarchies [1], to
diffusion models [2], and off-policy learning [3].



References

References

[1] Imad Aouali. Linear diffusion models meet contextual
bandits with large action spaces. In NeurlPS 2023 Workshop
on Foundation Models for Decision MaRing, 2023.

[2] Imad Aouali. Diffusion models meet contextual bandits. In
The Thirty-ninth Annual Conference on Neural Information
Processing Systems, 2025.



References

[3]

[4]

Imad Aouali, Victor-Emmanuel Brunel, David Rohde, and
Anna Korba. Bayesian off-policy evaluation and learning
for large action spaces. In International Conference on
Artificial Intelligence and Statistics, pages 136-144. PMLR,
2025.

Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer.
Finite-time analysis of the multiarmed bandit problem.
Machine Learning, 47:235-256, 2002.

Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire.
Contextual bandits with linear payoff functions. In
Proceedings of the 14th International Conference on
Artificial Intelligence and Statistics, pages 208-214, 2011.



References

6]

(7]

Tor Lattimore and Csaba Szepesvari. Bandit Algorithms.
Cambridge University Press, 2019.

Lihong Li, Wei Chu, John Langford, and Robert Schapire. A
contextual-bandit approach to personalized news article
recommendation. In Proceedings of the 19th International
Conference on World Wide Web, 2010.

William R. Thompson. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika, 25(3-4):285-294, 1933.

19



	Motivation
	Mixed-Effect Bandit Model
	Algorithm: Mixed-Effect Thompson Sampling ( meTS )
	Theory
	Learning the Structure
	Experiments
	Conclusion
	References

