Mixed-Effect Thompson Sampling

Imad Aouali ¹ Branislav Kveton ² Sumeet Katariya ²

¹Criteo Al Lab ²Amazon

Table of contents

- 1. Motivation
- 2. Mixed-Effect Bandit Model
- 3. Algorithm: Mixed-Effect Thompson Sampling (meTS)
- 4. Theory
- 5. Learning the Structure
- 6. Experiments
- 7. Conclusion

Motivation

Contextual Bandit Recap

Framework (Contextual Bandit [5, 6, 7]).

Contexts x	Actions a	Reward y
User / environment	Items / ads /	Stochastic,
features	decisions	depends on (x, a)

OBJECTIVE. Maximize expected cumulative reward; balance exploration/exploitation (UCB [4], TS [8]).

Why Structure? Three Examples

Movie recommendation

Movies share themes; learn category effects ψ_{ℓ} and action params θ_i . A: single param per category (biased). B: hierarchical (movie around category). C: multi-category per movie (our setting).

Why Structure? Three Examples

Movie recommendation

Movies share themes; learn category effects ψ_ℓ and action params θ_i . A: single param per category (biased). B: hierarchical (movie around category). C: *multi-category* per movie (our setting).

Ad placement (slates)

 $K \approx L^M$ slates but only L items. Parameterize $\theta_i = \sum_\ell b_{i,\ell} \, \psi_\ell + \epsilon_i$ to share information via items/positions.

Why Structure? Three Examples

Movie recommendation

Movies share themes; learn category effects ψ_ℓ and action params θ_i . A: single param per category (biased). B: hierarchical (movie around category). C: multi-category per movie (our setting).

Ad placement (slates)

 $K \approx L^M$ slates but only L items. Parameterize $\theta_i = \sum_\ell b_{i,\ell} \, \psi_\ell + \epsilon_i$ to share information via items/positions.

Drug design

Drugs are mixtures; dosage $b_{i,\ell}$ mixes component effects ψ_ℓ . Enables fast learning across candidates.

Model

Two-Level Graphical Model

Generative process.

$$\begin{split} \Psi_* \sim Q_0, \\ \theta_{*,i} \mid \Psi_* \sim P_{0,i}(\cdot \mid \Psi_*), \quad i \in [K], \\ Y_t \mid X_t, \theta_{*,A_t} \sim P(\cdot \mid X_t; \theta_{*,A_t}). \end{split}$$

- $\Psi_* = (\psi_{*,\ell})_{\ell \leq L} \in \mathbb{R}^{Ld}$: effect parameters.
- $\Theta_* = (\theta_{*,i})_{i \leq K} \in \mathbb{R}^{Kd}$: action parameters.
- Structure via missing edges $\psi_{*,\ell} \nrightarrow \theta_{*,i}$.

Linearity in Effects (Common, Tractable)

Assume known mixing weights $b_i = (b_{i,\ell})_{\ell \leq L}$ and

$$\theta_{*,i} \mid \Psi_* \sim P_{0,i} \left(\cdot \mid \sum_{\ell=1}^L b_{i,\ell} \psi_{*,\ell} \right).$$

Instances.

- Linear Gaussian (closed-form posteriors): $\Psi_* \sim \mathcal{N}(\mu_{\Psi}, \Sigma_{\Psi})$, $\theta_{*,i} \mid \Psi_* \sim \mathcal{N}(\sum_{\ell} b_{i,\ell} \psi_{*,\ell}, \Sigma_{0,i})$, $Y_t \mid X_t, \theta \sim \mathcal{N}(X_t^{\top} \theta, \sigma^2)$.
- GLM (Laplace approx): same priors, $Y_t \mid X_t, \theta \sim P$ in exp. family with mean $f(X_t^{\top}\theta)$ (e.g., logistic).

5

Algorithm

Hierarchical Sampling

Key idea. Sample effects then actions (conditional independence given Ψ).

Algorithm 1 meTS: Mixed-Effect Thompson Sampling

- 1: Input: Q_0 , $\{P_{0,i}\}_{i \leq K}$; initialize $Q_1 \leftarrow Q_0$, $P_{1,i} \leftarrow P_{0,i}$
- 2: for $t = 1, \ldots, n$ do
- 3: Sample $\Psi_t \sim Q_t$
- 4: For each $i \in [K]$, sample $\theta_{t,i} \sim P_{t,i}(\cdot \mid \Psi_t)$
- 5: $A_t \leftarrow \arg\max_{i \in [K]} \mathbb{E}[Y \mid X_t; \theta_{t,i}]$
- 6: Observe $Y_t \sim P(\cdot \mid X_t; \theta_{*,A_t})$
- 7: Update Q_{t+1} and $\{P_{t+1,i}\}$ using H_t $(X_{1:t-1},A_{1:t-1},Y_{1:t-1})$
- 8: end for

Closed-Form Posteriors: Linear Case

Let
$$G_{t,i} = \sigma^{-2} \sum_{\ell \in S_{t,i}} X_{\ell} X_{\ell}^{\top}$$
, $B_{t,i} = \sigma^{-2} \sum_{\ell \in S_{t,i}} Y_{\ell} X_{\ell}$.

Effect posterior $Q_t = \mathcal{N}(\bar{\mu}_t, \bar{\Sigma}_t)$:

$$\bar{\Sigma}_t^{-1} = \Sigma_{\Psi}^{-1} + \sum_{i=1}^K b_i b_i^{\top} \otimes (\Sigma_{0,i} + G_{t,i}^{-1})^{-1},$$

$$\bar{\mu}_t = \bar{\Sigma}_t \Big(\Sigma_{\Psi}^{-1} \mu_{\Psi} + \sum_{i=1}^K b_i \otimes \big((\Sigma_{0,i} + G_{t,i}^{-1})^{-1} G_{t,i}^{-1} B_{t,i} \big) \Big).$$

Action posterior $P_{t,i}(\cdot \mid \Psi_t) = \mathcal{N}(\tilde{\mu}_{t,i}, \tilde{\Sigma}_{t,i})$:

$$\tilde{\Sigma}_{t,i}^{-1} = \Sigma_{0,i}^{-1} + G_{t,i}, \qquad \tilde{\mu}_{t,i} = \tilde{\Sigma}_{t,i} \Big(\Sigma_{0,i}^{-1} \sum_{\ell=1}^{L} b_{i,\ell} \psi_{t,\ell} + B_{t,i} \Big).$$

GLM Case: Laplace Approximation

For action *i*:

$$\log \mathcal{L}_{t,i}(\theta) = \sum_{\ell \in S_{t,i}} Y_{\ell} X_{\ell}^{\top} \theta - A(X_{\ell}^{\top} \theta) + C(Y_{\ell}), \quad \dot{A} = f.$$

MLE and curvature:

$$\mu_{t,i}^{\text{LAP}} = \arg\max_{\theta} \log \mathcal{L}_{t,i}(\theta), \quad G_{t,i}^{\text{LAP}} = \sum_{\ell \in S_{t,i}} \dot{f}(X_{\ell}^{\top} \mu_{t,i}^{\text{LAP}}) X_{\ell} X_{\ell}^{\top}.$$

Approximate $\mathcal{L}_{t,i} \approx \mathcal{N}(\mu_{t,i}^{\text{LAP}}, (G_{t,i}^{\text{LAP}})^{-1})$ and plug into the linear formulas with $G \leftarrow G^{\text{LAP}}$, $G^{-1}B \leftarrow \mu^{\text{LAP}}$.

Why Hierarchical Sampling? Complexity

Joint posterior over $\Theta_* \in \mathbb{R}^{Kd}$: space $\mathcal{O}(K^2d^2)$, time $\mathcal{O}(K^3d^3)$. meTS with effects $\Psi \in \mathbb{R}^{Ld}$: space $\mathcal{O}((L^2+K)d^2)$, time $\mathcal{O}((L^3+K)d^3)$.

When $K\gg L$ (typical), hierarchical sampling is far cheaper while retaining cross-action coupling via $\Psi.$

Theory

Main Regret Bound (Linear Case)

Assume $\Sigma_{0,i}=\sigma_0^2I_d$, $\Sigma_\Psi=\sigma_\Psi^2I_{Ld}$, $\|X_t\|_2^2\leq\kappa_x$, and define $\kappa_b=\max_i\|b_i\|_2^2$.

Theorem (Informal). For any $\delta \in (0,1)$,

$$\mathcal{BR}(n) \leq \sqrt{2n\Big(\mathcal{R}^{\mathsf{A}}(n) + \mathcal{R}^{\mathsf{E}}(n)\Big)\log(1/\delta)} + cn\delta.$$

 \mathcal{R}^{A} : learning actions; \mathcal{R}^{E} : learning effects. Both scale with d, K/L, and prior widths.

Simplified (set $\kappa_x = \kappa_b = \sigma = 1$):

$$\mathcal{BR}(n) = \tilde{\mathcal{O}}\Big(\sqrt{nd\left(K\sigma_0^2 + L\sigma_\Psi^2(1+\sigma_0^2)\right)}\Big).$$

Lower priors \Rightarrow lower regret; fewer parameters $(K, L, d) \Rightarrow$ easier.

Benefits of Structure

- · If Ψ_* known $(\sigma_{\Psi} = 0)$: $\tilde{\mathcal{O}}(\sqrt{ndK\sigma_0^2})$ (no L term).
- If perfect linear tie ($\sigma_0 = 0$): $\tilde{\mathcal{O}}(\sqrt{ndL\sigma_{\Psi}^2})$ (no K term).
- No structure modeled: marginalize Ψ ; prior width inflates to $\sigma_0^2 + \sigma_\Psi^2 \Rightarrow \text{regret } \tilde{\mathcal{O}}(\sqrt{ndK(\sigma_0^2 + \sigma_\Psi^2)})$.

When $K\gg L$ and effects are uncertain ($\sigma_\Psi\gg\sigma_0$), meTS gains $\sim \sqrt{K/L}$.

Proof Sketch

- 1. Russo&Van Roy decomposition: reduce to bounding $\sum_t \|X_t\|_{\hat{\Sigma}_{t,A_t}}^2$.
- 2. Total covariance decomposition with mixing: for $\Gamma_i = b_i^{\top} \otimes I_d$, $\hat{\Sigma}_{t,i} = \tilde{\Sigma}_{t,i} + \tilde{\Sigma}_{t,i} \Sigma_{0,i}^{-1} \Gamma_i \bar{\Sigma}_t \Gamma_i^{\top} \Sigma_{0,i}^{-1} \tilde{\Sigma}_{t,i}$.
- 3. Control via eigenvalues of $\Gamma_i \Gamma_i^{\top} \leq \|b_i\|_2^2 I$; sum information gains over rounds.

Structure Learning

Proxy Structure from Offline Embeddings

Given offline $\hat{\theta}_i$ (e.g., MF embeddings), fit GMM with L clusters:

- Cluster centers $\mu_{\psi_{\ell}}$, covariances $\Sigma_{\psi_{\ell}} \Rightarrow$ effect prior mean/cov.
- Membership probs \Rightarrow mixing weights $b_{i,\ell}$.

Plugs into priors of **meTS**; bridges offline representation learning with online exploration.

Experiments

Synthetic: Linear Logistic

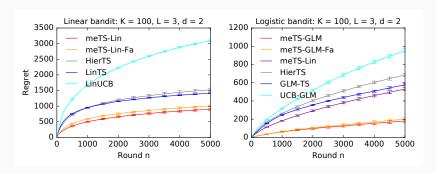


Figure 1: *meTS* (and factored variant) vs. structure-agnostic baselines and hierarchical TS with single effect.

MovieLens

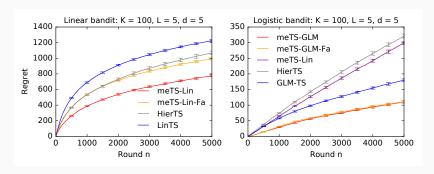


Figure 2: Proxy structure via GMM on movie embeddings; *meTS* wins under both Gaussian and logistic rewards.

Conclusion

Conclusion

- · Model: actions depend on multiple shared effects.
- Algorithm: meTS with hierarchical TS; closed-form linear posteriors; Laplace for GLM.
- Theory: regret splits into action+effect learning; shows structure benefits.
- Practice: competitive and scalable; proxy structures from offline data.

Limitations: prior/mixing misspecification; beyond-Gaussian posteriors; learned $b_{i,\ell}$ dynamics.

Extensions: we extended this work to deep hierarchies [1], to diffusion models [2], and off-policy learning [3].

References

- [1] Imad Aouali. Linear diffusion models meet contextual bandits with large action spaces. In NeurIPS 2023 Workshop on Foundation Models for Decision Making, 2023.
- [2] Imad Aouali. Diffusion models meet contextual bandits. In The Thirty-ninth Annual Conference on Neural Information Processing Systems, 2025.

References

- [3] Imad Aouali, Victor-Emmanuel Brunel, David Rohde, and Anna Korba. Bayesian off-policy evaluation and learning for large action spaces. In *International Conference on Artificial Intelligence and Statistics*, pages 136–144. PMLR, 2025.
- [4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multiarmed bandit problem. *Machine Learning*, 47:235–256, 2002.
- [5] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. Contextual bandits with linear payoff functions. In Proceedings of the 14th International Conference on Artificial Intelligence and Statistics, pages 208–214, 2011.

References

- [6] Tor Lattimore and Csaba Szepesvari. *Bandit Algorithms*. Cambridge University Press, 2019.
- [7] Lihong Li, Wei Chu, John Langford, and Robert Schapire. A contextual-bandit approach to personalized news article recommendation. In *Proceedings of the 19th International Conference on World Wide Web*, 2010.
- [8] William R. Thompson. On the likelihood that one unknown probability exceeds another in view of the evidence of two samples. *Biometrika*, 25(3-4):285–294, 1933.