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Motivation




Why Revisit IPS?

Setting

Offline contextual bandit [7, 8, 9, 10] with logged data
D,, = {(X;, A;, R;)}?_, from a known logging policy .

Goal: learn 7 € IT maximizing V(7)) = Ex.,, ar(|x) [1(X, A)].
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D,, = {(X;, A;, R;)}?_, from a known logging policy .

Goal: learn 7 € I maximizing V(7)) = Ex .y, avr(x) [7(X, 4)].

Problem

IPS is unbiased but has high variance; IW clipping reduces
variance but: (i) introduces high bias, (ii) is non-differentiable
(flat regions), (iii) sensitive to hyperparameter tuning.

Our answer
Exponential smoothing (ES): smooth, differentiable IW

regularization, and two-sided PAC-Bayes generalization
bounds that are optimizable by SGD.
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IPS and Regularized IPS
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Regularized IPS [5]

V(r) = fZRZ-uA;(Ai | X;), w@w<w
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IPS and Regularized IPS

Regularized IPS (generic)
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IPS and Regularized IPS

Regularized IPS (generic)

1n
=—) Rib(4i | X;), H<w
n:

Hard IW clipping: @ = min{w, M} or w =

max(mo,T) "

Limitations of hard IW clipping

Non-differentiable (zero gradients beyond M), highly
sensitive to M and 7, loses ordering when many mo(-|x) are
clipped to the same value.
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Definition and Properties

Smooth variant
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Definition and Properties

Smooth variant

IPS-«: i R; ))a, a € [0,1].

:M—‘

Bias-variance trade-off for o

B(V*)| < Ex ann(ix) [1 = m0(A1X)' 7],

a1 T(AX)
af = = — N/
V|72 < 5 Bxari [WO(A|X)20‘—1} ‘

a — 1: low bias (IPS); & — 0: low variance.



Why ES Beats Clipping in Optimization

- Smooth and everywhere differentiable = stable SGD; no
flat regions.

- Preserves ranking induced by mg: if mo(a|z) < mo(a|z) then
mo(alz)® < mo(a’|z)?.

- Single bounded hyperparameter (a € [0,1]) instead of
M € [0,00).



Pessimism via PAC-Bayes




From One-Sided to Two-Sided

Prior pessimistic objectives
One-sided bounds [11, 12] lead to V(xr) > V(xr) — g(-) but
cannot certify estimator quality.



From One-Sided to Two-Sided

Prior pessimistic objectives
One-sided bounds [11, 12] lead to V(xr) > V(xr) — g(-) but
cannot certify estimator quality.

Our approach

Two-sided, tractable PAC-Bayes bound directly optimized by
SGD. Works without the bounded-IW assumption and applies
to standard IPS (o = 1).



Main Theorem (Two-Sided PAC-Bayes, Informal)

Dy (Q||P) + V;¥(mq)

[R(mg) - R5(mo)| < O .

where

o o _ 1 mg(ailzs)
R%(Tr@) — Z?:l 7|—0Q£ai|zi)acia

* Ty = Tp.

- BY(mg) Is a bias term.

- V%(mg) is a variance term.

+ By

n

Va € [0,1].

(7a))




Adaptive, Data-Driven «a

Grounded and data-adaptive principle to simultaneously
optimize « € [0,1] and Q € M;(H) as

D (QIIP) + V' (mq)
Ve

argmin  R%(mq) + (’)(

+ Bi(mq))
QeM;(H),ac0,1]



Experiments




- Supervised-to-bandit conversion on vision datasets:
MNIST, FashionMNIST, EMNIST, CIFAR100.

- Policies: Gaussian and Mixed-Logit (PAC-Bayes-friendly);
priors tied (optionally) to .

- Optimization: Adam; we compare two-sided bound vs.
prior one-sided baselines.
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ES vs. Clipped-PAC Baselines
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Figure 1: Across logging-quality 7, ES + two-sided PAC-Bayes

outperforms [11]. Gaussian policies typically strongest.
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Tuning Sensitivity and Adaptive «
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Figure 2: Left: grid over 7 (clip) and « (ES); adaptive « close to best
fixed choice. Right: average reward value for varying « using either
modest or good logging; IW regularization is much needed for
modest logging policies.
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Takeaways




Key Takeaways

- Exponential smoothing: smooth IW regularization with
explicit bias-variance control; better optimization behavior
than clipping.

- Two-sided, tractable PAC-Bayes bounds: applicable to
standard IPS; SGD-friendly.

- Theory extended to any IW regularization technique [5].

Limitations: Data-dependent quantities in the bound;
symmetric tails may be loose. Performance breaks in
large-scale settings [3] where Bayesian direct methods with
informative priors [1, 2, 4, 6] perform better when the number
of actions is high.
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