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Motivation



Why Revisit IPS?

Setting
Offline contextual bandit [7, 8, 9, 10] with logged data
Dn = {(Xi, Ai, Ri)}ni=1 from a known logging policy π0.

Goal: learn π̂ ∈ Π maximizing V (π) = EX∼ν,A∼π(·|X) [r(X,A)].

Problem
IPS is unbiased but has high variance; IW clipping reduces
variance but: (i) introduces high bias, (ii) is non-differentiable
(flat regions), (iii) sensitive to hyperparameter tuning.

Our answer
Exponential smoothing (ES): smooth, differentiable IW
regularization, and two-sided PAC-Bayes generalization
bounds that are optimizable by SGD.
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Regularized IPS



IPS and Regularized IPS

IPS [8]

V̂IPS(π) =
1

n

n∑
i=1

Riw(Ai | Xi), w(a | x) = π(a | x)
π0(a | x)

.

Regularized IPS [5]

V̂ (π) =
1

n

n∑
i=1

Ri ŵ(Ai | Xi), ŵ ≤ w.

Hard IW clipping: ŵ = min{w, M} or ŵ = π
max(π0,τ)

.
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IPS and Regularized IPS

Regularized IPS (generic)

V̂ (π) =
1

n

n∑
i=1

Ri ŵ(Ai | Xi), ŵ ≤ w.

Hard IW clipping: ŵ = min{w, M} or ŵ = π
max(π0,τ)

.

Limitations of hard IW clipping
Non-differentiable (zero gradients beyondM ), highly
sensitive toM and τ , loses ordering when many π0(·|x) are
clipped to the same value.

4



IPS and Regularized IPS

Regularized IPS (generic)

V̂ (π) =
1

n

n∑
i=1
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Exponential Smoothing



Definition and Properties

Smooth variant

IPS-α : V̂ α(π) =
1

n

n∑
i=1

Ri
π(Ai | Xi)

π0(Ai | Xi)α
, α ∈ [0, 1].

Bias-variance trade-off for α

|B(V̂ α)| ≤ EX,A∼π(·|X)

[
1− π0(A|X)1−α

]
,

V
[
V̂ α

]
≤ 1

n
EX,A∼π(·|X)

[
π(A|X)

π0(A|X)2α−1

]
.

α → 1: low bias (IPS); α → 0: low variance.
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Why ES Beats Clipping in Optimization

• Smooth and everywhere differentiable⇒ stable SGD; no
flat regions.

• Preserves ranking induced by π0: if π0(a|x) < π0(a
′|x) then

π0(a|x)α < π0(a
′|x)α.

• Single bounded hyperparameter (α ∈ [0, 1]) instead of
M ∈ [0,∞).
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Pessimism via PAC-Bayes



From One-Sided to Two-Sided

Prior pessimistic objectives
One-sided bounds [11, 12] lead to V (π) ≥ V̂ (π)− g(·) but
cannot certify estimator quality.

Our approach
Two-sided, tractable PAC-Bayes bound directly optimized by
SGD. Works without the bounded-IW assumption and applies
to standard IPS (α = 1).
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Main Theorem (Two-Sided PAC-Bayes, Informal)

|R(πQ)− R̂α
n(πQ)| ≤ O

(DKL(Q||P) + V̄ α
n (πQ)√

n
+Bα

n (πQ)
)
,

where
• R̂α

n(πQ) =
1
n

∑n
i=1

πQ(ai|xi)
π0(ai|xi)α

ci , ∀α ∈ [0, 1] .

• π0 = πP.
• Bα

n (πQ) is a bias term.
• V̄ α

n (πQ) is a variance term.
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Adaptive, Data-Driven α

Tuning α
Grounded and data-adaptive principle to simultaneously
optimize α ∈ [0, 1] and Q ∈ M1(H) as

argmin
Q∈M1(H),α∈[0,1]

R̂α
n(πQ) +O

(DKL(Q||P) + V̄ α
n (πQ)√

n
+Bα

n (πQ)
)
.
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Experiments



Setup

• Supervised-to-bandit conversion on vision datasets:
MNIST, FashionMNIST, EMNIST, CIFAR100.

• Policies: Gaussian and Mixed-Logit (PAC-Bayes-friendly);
priors tied (optionally) to π0.

• Optimization: Adam; we compare two-sided bound vs.
prior one-sided baselines.
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ES vs. Clipped-PAC Baselines
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Figure 1: Across logging-quality η0, ES + two-sided PAC-Bayes
outperforms [11]. Gaussian policies typically strongest.
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Tuning Sensitivity and Adaptive α
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Figure 2: Left: grid over τ (clip) and α (ES); adaptive α close to best
fixed choice. Right: average reward value for varying α using either
modest or good logging; IW regularization is much needed for
modest logging policies.
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Takeaways



Key Takeaways

• Exponential smoothing: smooth IW regularization with
explicit bias-variance control; better optimization behavior
than clipping.

• Two-sided, tractable PAC-Bayes bounds: applicable to
standard IPS; SGD-friendly.

• Theory extended to any IW regularization technique [5].

Limitations: Data-dependent quantities in the bound;
symmetric tails may be loose. Performance breaks in
large-scale settings [3] where Bayesian direct methods with
informative priors [1, 2, 4, 6] perform better when the number
of actions is high.
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