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Interactive Systems



Learning in Interactive Systems

FRAMEWORK (OFFLINE CONTEXTUAL BANDIT [8, 9, 12, 13]).

Contexts x
User / environment
features

Actions a
Items / ads /
decisions

Logging policy π0
Deployed system

LOGGED DATA. D = {(xi, ai, ri)}ni=1 with ai ∼ π0(· | xi).
OBJECTIVE. Evaluate/learn a new policy π that maximizes

V (π) = EX∼ν,A∼π(·|X) [r(X,A)] .
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IPS vs DM in Large Action Spaces

Inverse Propensity Scoring (IPS) [5, 7, 9, 10, 14, 15]

V̂IPS(π, S) =
1

n

n∑
i=1

π(ai | xi)
π0(ai | xi)

ri

Pros: unbiased if π0 has full support.
Cons: high variance, biased if π0 has deficient support.

Direct Method (DM) [4, 11]

V̂DM(π, S) =
1

n

n∑
i=1

∑
a∈A

π(a | xi) r̂(xi, a)

Pros: low variance; does not require π0, practical [3].
Cons: modeling bias if r̂ is misspecified.
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Structured DM (sDM)



Motivation: Why Structure?

Pitfall of non-structured priors. Standard Bayesian DM:

θa ∼ N (µa,Σa) ,

R | X,A, θ ∼ N (ϕ(X)⊤θA, σ
2)

Issue: Posterior of θa only uses samples with A = a. Unseen
actions revert to the prior⇒ inefficient when K is large.

Key idea of sDM. Share information across actions via latent ψ:

ψ ∼ q ,

θa | ψ ∼ pa(·; fa(ψ)),
R | X,A, θ ∼ p(· | X; θA)

Effect: Observing one action updates beliefs about others.
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Graphical View

: taken action

• Conditional independence: {θa}a independent given ψ.
• Structure encoded by fa (e.g., linear mixing viaWa).
• Scales without expensive Kd×Kd posteriors.

5



Linear–Gaussian Instance

Model.

ψ ∼ N (µ,Σ) ,

θa | ψ ∼ N (Waψ,Σa) ,

R | X,A, θ ∼ N (ϕ(X)⊤θA, σ
2) .

Closed-form posteriors.

θa | ψ, S ∼ N (µ̃a, Σ̃a)

ψ | S ∼ N (µ̄, Σ̄)

Action posterior (marginalizing ψ): θa | S ∼ N (µ̂a, Σ̂a) with

µ̂a = Σ̃a(Σ
−1
a Waµ̄+Ba), Σ̂a = Σ̃a + Σ̃aΣ

−1
a WaΣ̄W

⊤
a Σ−1

a Σ̃a

Plug-in reward: r̂(x, a) = ϕ(x)⊤µ̂a.
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Applications of the Structure

• Mixed-effects: Wa = w⊤
a ⊗ Id, ψ = (ψj)j≤J ; sparsity via

wa,j = 0.
• Low-rank: d′ ≪ d,Wa low-rank⇒ shared latent factors
across actions.

• Practical: Movies/items clustered;Wa encodes theme
mixture.
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OPE/OPL with sDM



Evaluation and Learning

OPE (DM plug-in).

V̂DM(π, S) =
1

n

n∑
i=1

∑
a∈A

π(a | Xi) r̂(Xi, a), r̂(x, a) = E [r(x, a; θ) | S]

OPL (Greedy on r̂).

π̂G(a|x)=1{a=argmaxb∈A r̂(x,b)}

Greedy beats pessimism under our Bayesian metric (next).
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Main Results (Informal)

Thm (Covariance-dependent bound).

BSO(π̂G) ≲ E
[
∥ϕ(X)∥Σ̂π∗(X)

]
,

where BSO is the suboptimality on average, with expectation
taken over S and θ∗ ∼ prior.

• sDM’s Bayes suboptimality is smaller when posterior
uncertainty of the optimal action along ϕ(X) is small.
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Main Results (Informal)

Thm (Scaling in n).
BSO(π̂G) = O( 1/

√
n ) with constants that depend explic-

itly on π0(π∗(X) | X).

• Avoids “well-explored dataset” assumptions; and only
depends on π0’s exploration of the optimal action π∗.
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Experiments



Synthetic and MovieLens
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Figure 1: OPE/OPL performance: sDM vs. DM baselines and
IPS-variants (MIPS, PC).
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Scaling with K
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Figure 2: sDM vs. standard Bayesian DM as number of actions K
increases.
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Conclusion



Conclusion

• sDM: Bayesian DM with structured priors to share
information across actions.

• Closed-form linear–Gaussian instance; scalable to large K .
• New Bayesian metric (BSO); greedy preferred to pessimism
under BSO.

• Strong empirical results; robust to moderate
misspecification.

Limitations: prior misspecification theory; non-linear
hierarchies, neural networks.

Extentions: We extended these ideas to online bandits [1, 2, 6],
large-scale rec sys [3, 4].
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