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Abstract

Abstract. Modern interactive systems shape our internet experience. From search to recom-
mendation engines, these systems organise vast amounts of content, allowing users to efficiently
find answers to their needs. The quality of user experiences within these systems can vary sig-
nificantly, and the ability to provide users with relevant options at the right moment can greatly
enhance both user satisfaction and the profitability of the businesses operating these systems.
In recent years, there has been a concerted effort to leverage machine learning techniques to
improve interactive systems by combining various signals. This thesis focuses on harnessing a
specific type of signal: user interaction logs. These logs are uniquely valuable as they directly
capture successes and failures in previous interactions. Nonetheless, the interactive nature of
the logs makes their analysis more challenging compared to classical supervised learning prob-
lems. The Offline Contextual Bandit formalises an idealized version of this learning problem.
It reduces the interaction logs to triplets of an observed context, an action made by the system
and a reward received. These triplets are core to analyse the problem and to learn improved
interactive systems. Notwithstanding recent advances, there remains significant challenges to
learn decision systems with performance certificates and scale current approaches to real world
problems.

Our first concern is being able to measure how well an interactive system will perform before it
engages with the environment. Statistical learning theory focuses on studying the generalization
ability of algorithms, and presents itself as the perfect candidate to answer this question. His-
torically, its tools were used to improve our understanding of the supervised learning paradigm,
resulting in Empirical and Structural Risk minimization principles. More recently, statistical
learning theory was adapted to learning from interaction logs, and resulted in the Counterfactual
Risk minimization principle. This new objective captures the difficulties of learning from con-
textual bandit logs, but its application is limited to simple scenarios. In particular, the learning
objective is non-convex, it cannot be accelerated with stochastic gradient methods, it introduces
new hyperparameters that are difficult to tune and fails to provide performance certificates on
the newly trained interaction systems. The first part of the thesis focuses on developing new
statistical learning ideas to address these challenges. We reframe the Counterfactual Risk min-
imization using Distributionally Robust Optimization. This change of perspective allows us to
improve the optimization procedure, to automatically calibrate hyperparameters while enjoying
the same guarantees. Furthermore, we explore PAC-Bayesian learning, a statistical learning
framework that provides a finer analysis of the generalization ability of algorithms. Using this
paradigm, we build new strategies that require no hyperparameter tuning, that enable fast op-
timization and can provide strong guarantees on the performance of our interactive systems.
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Another concern is to efficiently learn decision systems operating on massive action spaces. The
second part of the thesis addresses this challenge, focusing primarily on large scale recommenda-
tion. Efficient learning in this case can be achieved by exploiting different signals and speeding
up the optimization routine. Existing methods rely solely on the bandit signal: the log of the
past successes and failures. However, non-bandit signal, such as collaborative filtering, can be
extremely valuable. Building on this observation, we dedicate a chapter to develop a Bayesian
approach to recommendation that combines both signals. We give proper computational tools
to scale the learning to large datasets and prove empirically that the resulting systems enjoy
improved recommendation quality.

Large scale recommender systems are updated frequently to match the ever-shifting interests
of the users. The ability to perform these updates regularly relies on the efficiency of the op-
timization routine. When confronted with exceedingly large action spaces, these systems are
constrained to the maximum inner product search (MIPS) structure for rapid query responses.
Despite their prevalence in the industry, optimizing these systems with common learning objec-
tives tend to be slow. Indeed, every gradient iteration scales at least linearly with the catalog
size. This complexity can be detrimental to learning recommender systems operating on bil-
lions of items. The last two chapters address this issue by proposing optimization routines with
sublinear complexities; a first solution is based on a new importance sampling variant of the
reinforce algorithm, and a second one introduces a novel architecture and method for optimizing
MIPS-based interactive systems. The proposed solutions accelerate optimization without losing
on the recommendation quality.

Résumé. Les systèmes interactifs modernes façonnent notre expérience de l’internet. Des mo-
teurs de recherche aux moteurs de recommandation, ces systèmes organisent de vastes quantités
de contenu, permettant aux utilisateurs de trouver efficacement des réponses à leurs besoins.
La qualité de l’expérience utilisateur au sein de ces systèmes peut varier de manière significa-
tive, et la capacité à fournir aux utilisateurs des options pertinentes au bon moment peut, non
seulement améliorer leur satisfaction, mais aussi la rentabilité des entreprises qui exploitent
ces systèmes. Ces dernières années, des efforts concertés ont été déployés pour exploiter les
techniques d’apprentissage automatique afin d’améliorer les systèmes interactifs en combinant
différents signaux. Cette thèse se concentre sur l’exploitation d’un type spécifique de signaux :
les données d’interaction. Ces données ont une valeur unique car ils enregistrent directement
les succès et les échecs des interactions précédentes. Néanmoins, la nature interactive de ces
données rend leur analyse plus difficile par rapport aux problèmes classiques d’apprentissage.
Le bandit contextuel hors-ligne formalise une version idéalisée de ce problème d’apprentissage.
Il réduit les données d’interaction à des triplets; un contexte observé, une action effectuée par
le système et une récompense reçue. Ces triplets sont essentiels à l’analyse du problème et à
l’apprentissage de systèmes interactifs améliorés. Malgré les progrès récents, il reste des défis
importants à relever pour apprendre des systèmes de décision avec des certificats de performance
et pour adapter les approches actuelles aux problèmes de grande échelle.

Notre première préoccupation est de pouvoir mesurer les performances de notre système avant
qu’il intéragisse avec l’environnement. La théorie de l’apprentissage statistique se concentre sur
l’étude de la capacité de généralisation des algorithmes et se présente comme le candidat idéal
pour répondre à cette question. Historiquement, ses outils ont été utilisés pour améliorer notre
compréhension du paradigme de l’apprentissage supervisé, donnant naissance aux principes de
minimisation du risque empirique et structurel. Plus récemment, la théorie de l’apprentissage
statistique a été adaptée à l’apprentissage à partir de données d’interactions, ce qui a donné nais-
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sance au principe de minimisation du risque contrefactuel. Ce nouvel objectif tient compte des
difficultés liées à l’apprentissage à partir de données de bandits contextuels, mais son application
est limitée à des scénarios simples. En particulier, l’objectif d’apprentissage n’est pas convexe, il
ne peut pas être accéléré avec des méthodes de gradient stochastique, il introduit de nouveaux
hyperparamètres qui sont difficiles à régler et ne parvient pas à fournir des certificats de per-
formance sur les systèmes d’interaction nouvellement formés. La première partie de la thèse se
concentre sur le développement de nouvelles idées d’apprentissage statistique pour relever ces
défis. Nous recadrons la minimisation du risque contrefactuel (CRM) en utilisant l’optimisation
distributionnellement robuste (DRO). Ce changement de perspective nous permet d’améliorer
la procédure d’optimisation, de calibrer automatiquement les hyperparamètres tout en bénéfi-
ciant des mêmes garanties. En outre, nous nous intéressons à l’apprentissage PAC-Bayésien,
un cadre d’apprentissage statistique capable de mieux analyser la capacité de généralisation des
algorithmes. En utilisant ce paradigme, nous construisons de nouvelles stratégies qui ne nécessi-
tent aucun réglage des hyperparamètres, qui permettent une optimisation rapide et qui peuvent
fournir des garanties solides sur la performance de nos systèmes interactifs.

Une autre préoccupation est d’apprendre efficacement les systèmes de décision fonctionnant sur
des espaces d’action massifs. La deuxième partie de la thèse aborde ce défi, en se concentrant
principalement sur la recommandation à grande échelle. L’apprentissage efficace dans ce cas peut
être réalisé en exploitant différents signaux et en accélérant la procédure d’optimisation. Les
méthodes existantes s’appuient uniquement sur le signal de bandit : les données d’intéraction du
système avec les utilisateurs. Cependant, les signaux autres que le signal bandit, tels que le com-
portement organique, peuvent s’avérer extrêmement précieux. Sur la base de cette observation,
nous consacrons un chapitre au développement d’une approche bayésienne de la recommanda-
tion qui combine les deux signaux. Nous fournissons les outils d’optimisation appropriés pour
étendre l’apprentissage à de grands ensembles de données et prouvons empiriquement que les
systèmes résultants bénéficient d’une meilleure qualité de recommandation.

Les systèmes de recommandation à grande échelle sont fréquemment mis à jour pour s’adapter
aux intérêts en constante évolution des utilisateurs. La capacité à effectuer ces mises à jour
régulièrement dépend de l’efficacité de la procédure d’optimisation. Lorsqu’ils sont confrontés à
des espaces d’action extrêmement vastes, ces systèmes sont contraints à la structure (MIPS):
recherche du produit scalaire maximal pour répondre rapidement aux requêtes. Malgré leur pré-
valence dans l’industrie, l’optimisation de ces systèmes avec des objectifs d’apprentissage com-
muns tend à être lente. En effet, le calcul de chaque gradient a une complexité au moins linéaire
par rapport à la taille du catalogue. Cette complexité peut être préjudiciable à l’apprentissage
de systèmes de recommandation fonctionnant sur des milliards d’éléments. Les deux derniers
chapitres abordent ce problème en proposant des procédures d’optimisation avec des complex-
ités sous-linéaires ; une première solution est basée sur une nouvelle variante d’échantillonnage
préférentiel, et une seconde introduit une nouvelle architecture et une méthode pour optimiser les
systèmes interactifs de la structure (MIPS). Les solutions proposées accélèrent l’optimisation
sans nuire à la qualité de la recommandation.
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Introduction en français

1 Présentation générale
Ce manuscrit présente des contributions récentes, allant de la théorie aux applications à grande
échelle, à un formalisme hors ligne du problème de la prise de décision séquentielle. Il s’agit
d’un problème important avec de nombreuses applications dans le monde réel où un décideur,
chargé d’optimiser un objectif spécifique, intéragit avec un environnement inconnu, enregistre
ces intéractions et les exploite afin de mieux résoudre la tâche. Dans ce contexte, nous souhaitons
répondre à la question suivante :

Comment tirer parti des interactions antérieures du décideur pour améliorer ses performances?

La réponse à cette question peut avoir un impact important sur les problèmes pratiques du
monde réel. Par exemple, elle peut aider une campagne de marketing en ligne à obtenir plus
de dons pour une campagne caritative, elle peut rendre plus précise la prescription des médica-
ments, ou elle peut simplement améliorer la qualité de la recommandation de votre plateforme
de streaming préférée. Dans cette introduction, nous présentons le problème de l’apprentissage
des décideurs à l’aide de l’exemple de la recommandation, qui sera au centre d’une grande partie
de cette thèse. Les systèmes de recommandation se présentent comme le plus grand pilier de
l’expérience Internet moderne. Dans chaque interaction, ces systèmes naviguent silencieusement
une quantité écrasante d’informations et la traitent pour répondre aux besoins spécifiques de
l’utilisateur. Une seule interaction d’un moteur de recommandation peut être résumée comme
suit : le système rencontre un utilisateur, il choisit un article (ou plusieurs articles) à recomman-
der dans un catalogue potentiellement vaste, délivre la recommandation et observe un retour de
l’utilisateur.

Le retour obtenu est précieux car il représente les succès et les échecs des interactions passées.
Ces interactions sont enregistrées et sont ensuite utilisées pour améliorer la qualité des recom-
mandations du système. La nature interactive de l’ensemble des données collectées fait que les
paradigmes d’apprentissage courants, tels que l’apprentissage supervisé, ne sont pas adaptés à
l’étude de ce problème. Récemment, on s’est intéressé à l’adaptation des formalismes de prise
de décision séquentielle pour améliorer la recommandation à partir des interactions enregistrées.
L’apprentissage par renforcement (RL) (Sutton and Barto, 2018) et les bandits contextuels (CB)
(Lattimore and Szepesvári, 2020) commencent à s’imposer comme de bons candidats pour mod-
éliser ce problème d’apprentissage. Le cadre RL repose sur l’idée que les actions effectuées
peuvent avoir un impact sur l’environnement. Ce paradigme peut modéliser des problèmes de
décision séquentielle complexes et permet la planification. Ses outils peuvent optimiser les sys-
tèmes de recommandation pour des objectifs long terme ; par exemple, augmenter l’engagement
et la rétention des utilisateurs (Afsar et al., 2022). L’adoption de ce formalisme a toutefois

9



10 1. Présentation générale

xi ai ri

i ∈ [n]

Figure 1: L’ensemble des données enregistrées Dn représentant n interactions du système de
recommandation. Tous les triplets (contexte, action, récompense) sont indépendants.

un coût. La prise en compte des effets à long terme de la recommandation sur les utilisateurs
rend l’analyse de cette approche plus difficile, ce qui nous incite à envisager un formalisme plus
simple. Le bandit contextuel offre un compromis utile entre l’analyse formelle et l’impact pra-
tique. Son hypothèse sous-jacente est que les actions effectuées par le système n’influencent pas
les résultats futurs. Si cette formulation est moins convaincante lorsqu’il s’agit de récompenses
différées (Afsar et al., 2022), son utilisation est raisonnable si nous voulons nous concentrer sur
l’apprentissage de systèmes de recommandation qui optimisent des objectifs à court terme, lim-
itées à l’action, telles que le taux de clics (Sakhi et al., 2020a) ou la durée de visionnage (Chen
et al., 2019a). Dans cette thèse, nous adoptons la boîte à outils des bandits contextuels hors
ligne (Bottou et al., 2013; Nguyen-Tang et al., 2022) pour formaliser l’apprentissage à partir
des données d’interaction. Nous donnons de nouvelles approches fondées théoriquement pour
apprendre des politiques avec de fortes garanties de performance et proposons de nouveaux al-
gorithmes pour élargir l’impact de ce cadre à des applications à grande échelle du monde réel.

L’interaction d’un utilisateur avec un article recommandé peut être réduite à l’exemple suivant.
Un utilisateur navigue sur un site web, le système de recommandation choisit un article dans
un catalogue et le montre à l’utilisateur, l’utilisateur interagit avec l’article (clique ou non) et
le résultat de cette interaction est encodé dans un retour d’information (présence/absence de
clic) que le système enregistre. Dans le cadre du bandit contextuel, un utilisateur est représenté
par un contexte x, généralement un vecteur réel vivant dans un espace à d dimensions X ⊆ Rd.
Ces contextes, et donc les utilisateurs, sont échantillonnés indépendamment à partir de la même
distribution inconnue ν(X ). Après avoir vu un utilisateur, le moteur de recommandation lui
fournit un article a issu d’un catalogue A de taille |A| dansN. Le système de recommandation
est modélisé comme une politique π : X → P (A), qui est une fonction qui prend un contexte x
et produit une distribution π(·|x) sur l’espace des actions possibles A. Recommander un article
a pour le contexte x revient à échantillonner l’article à partir de la distribution produite a ∼
π(·|x). Après avoir livré l’article a à l’utilisateur du contexte x, notre système reçoit un retour
de l’utilisateur; une récompense stochastique r ∈ R+ provenant d’une distribution inconnue
p(·|x, a). Cette récompense encode la performance de l’élément recommandé par rapport à
la mesure souhaitée ; plus la récompense est élevée, plus la performance l’est aussi. Notre
objectif est de trouver des politiques très performantes, en minimisant le risque, défini comme la
récompense négative attendue en tirant des actions de notre politique. Le risque d’une politique
donnée π peut être exprimé comme suit :

R(π) = −Ex∼ν,a∼π(·|x)
[︂
Er∼p(·|x,a)[r]

]︂
.

Ce risque est définie comme une espérance sous la distribution générée par la politique évaluée.
Comme nous n’avons pas accès aux interactions de la nouvelle politique π avec l’environnement,
un moyen simple d’estimer cette quantité est de laisser π interagir avec les utilisateurs en ligne.
Dans la plupart des scénarios, cela n’est pas possible, car nous n’avons pas le luxe de dé-
ployer de mauvaises politiques. Dans les applications réelles, nous disposons déjà de la version
actuelle de notre système de recommandation, représentée par la politique π0, qui interagit avec
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l’environnement et enregistre ces intéractions. Notre objectif principal est d’évaluer dans quelle
mesure une nouvelle itération du système améliorera la version actuellement déployée. Un moyen
courant d’y parvenir est de réaliser des A/B-tests en ligne (Kohavi et al., 2012). Cette approche
est considérée comme l’"étalon-or" pour estimer l’effet du remplacement de la politique actuelle
π0 par une politique potentiellement meilleure (Gupta et al., 2019). Les A/B-tests nécessi-
tent toutefois un effort d’ingénierie important et un monitoring constant s’étalant sur plusieurs
jours pour être correctement analysés. Idéalement, nous avons besoin d’outils d’évaluation et
d’apprentissage hors ligne qui puissent nous trouver des politiques prometteuses afin de réduire
le nombre d’A/B-tests inutiles. Lorsque les hypothèses du bandit contextuel sont satisfaites,
nous pouvons utiliser la boîte à outils du cadre pour y parvenir. L’idée est d’exploiter les inter-
actions existantes de π0 pour trouver des politiques plus performantes. L’ensemble de données
d’interaction est appelé dans la littérature "logged bandit feedback dataset" (Swaminathan and
Joachims, 2015a) :

Dn = {xi ∼ ν, ai ∼ π0(·|xi), ri ∼ p(·|xi, ai), π0(ai|xi)}i∈[n].

La figure 1 présente une représentation graphique des données. La principale difficulté rencon-
trée lors de l’apprentissage à partir de ces données est le biais potentiel créé par la procédure de
collecte ; nous n’avons accès qu’aux résultats des actions échantillonnées à partir de π0. Le cadre
d’apprentissage hors ligne du bandit contextuel propose deux approches distinctes pour résoudre
ce problème : l’approche de modélisation du coût et l’approche d’échantillonnage préférentiel.

l’approche de modélisation du coût ou la méthode directe exploite les données d’interaction Dn
pour construire un modèle de la récompense (Sakhi et al., 2020a; Jeunen and Goethals, 2021).
Une politique optimale est alors naturellement dérivée en jouant pour chaque contexte x, l’action
avec la récompense la plus élevée selon le modèle. La méthode directe est simple à mettre en
œuvre, car elle réduit l’apprentissage à un problème de régression (Brandfonbrener et al., 2021).
Cette approche est théoriquement bien étudiée et bénéficie de solides garanties (Nguyen-Tang
et al., 2022). Cependant, elle souffre d’un biais important et incontrôlé lorsque la récompense
est complexe, ce qui rend son efficacité entièrement dépendante de notre capacité à modéliser
la structure du problème. La méthode directe est efficace lorsque nous avons confiance en notre
capacité à comprendre le problème. Lorsque le signal de récompense est complexe, nous pouvons
préférer une autre approche qui ne dépend pas entièrement de notre effort de modélisation.

L’approche d’échantillonnage préférentiel (Horvitz and Thompson, 1952; Bottou et al., 2013;
Dudík et al., 2014), souvent appelée apprentissage hors politique, ne nécessite pas de modèlisa-
tion. Elle apprend une nouvelle politique π directement à partir des interactions Dn en utilisant
des estimateurs corrigés par échantillonnage préférentiel (Chopin and Papaspiliopoulos, 2020).
Sous des hypothèses modérées (Horvitz and Thompson, 1952), cette méthode peut produire des
estimateurs non biaisés, qui se présentent plus faciles à analyser et à optimiser (Ajalloeian and
Stich, 2020). Ces estimateurs souffrent cependant d’une variance potentiellement importante
dès que la politique apprise s’éloigne de la politique d’enregistrement π0, ce qui les rend peu
fiables pour l’apprentissage. Il est prouvé empiriquement que l’apprentissage avec ces estima-
teurs peut aboutir à des politiques peu performantes (Swaminathan and Joachims, 2015a,b),
parfois même pires que π0 (Chen et al., 2019b; London and Sandler, 2019). Cette observation
motive l’utilisation d’outils de la théorie de l’apprentissage (Zhou, 2002; McAllester, 1998) pour
proposer des objectifs avec un meilleur comportement, sans connaissance de la fonction de ré-
compenses. L’objectif de cet effort de recherche est de produire de nouvelles politiques qui sont
théoriquement meilleures que la politique d’enregistrement sans interactions additionelles
avec l’environnement. Cela est utile dans les environnements de production où nous aimerions
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proposer un nouveau système qui améliorera le système de production actuel avec certitude.

Le premier effort dans ce sens a été mené par Swaminathan and Joachims (2015a) et a abouti
au principe CRM : Counterfactual Risk Minimisation ou Minimisation du risque contre-
factuel. Le principe CRM s’appuie sur les outils de la théorie de l’apprentissage statistique
(Vapnik, 1998), un cadre qui permet d’étudier la capacité de généralisation des algorithmes
d’apprentissage. Motivé par la construction d’une borne empirique de type Bernstein (Maurer
and Pontil, 2009) sur le risque réel des politiques, et utilisant des arguments de nombre de cou-
verture (Zhou, 2002), ce principe préconise de pénaliser les estimateurs de poids d’importance
avec la racine carrée de la variance empirique du risque. Cette pénalité est contrôlée par un hy-
perparamètre λ, défini à l’aide d’une validation croisée sur une partie de validation. L’intuition
sous-jacente est que pour améliorer la politique π0, nous devrions rechercher des politiques qui
ont un petit risque empirique tout en restant proches de π0. Ce principe permet d’obtenir des
politiques plus performantes que l’optimisation directe d’estimateurs d’échantillonnage préféren-
tiel (Swaminathan and Joachims, 2015a,b). Toutefois, son paradigme d’apprentissage souffre de
différentes limitations, ce qui réduit son application à des scénarios simples. En particulier,
l’ajout de la pénalisation rend l’objectif d’apprentissage non convexe et non décomposable, ce
qui interdit l’utilisation de méthodes de gradient stochastique. Cette pénalité est également
contrôlée par un nouvel hyperparamètre λ qui est difficile à régler et qui ajoute à la complexité
de l’approche. Enfin, le principe CRM ne fournit pas de certificats de performance sur la poli-
tique nouvellement formée. Ces limites seront examinées en détail plus loin dans l’introduction.
Plus récemment, un nouveau principe a été introduit pour atténuer certaines de ces limita-
tions. En analysant ce problème d’apprentissage sous l’angle PAC-Bayesien (McAllester, 1998;
Alquier, 2021), London and Sandler (2019) développent une approche améliorée. Les auteurs
fondent leur analyse sur la borne PAC-Bayesienne de McAllester (2003). Pour les politiques
paramétriques, cela motive une régularisation L2 du paramètre de la nouvelle politique vers le
paramètre de la politique d’enregistrement π0. La régularisation est également contrôlée par un
hyperparamètre λ qui doit être réglé. Ce principe est basé sur la même intuition de rester proche
de π0, mais cette fois, il est effectué sur l’espace des paramètres. L’adoption d’une régularisation
L2 au lieu d’une pénalisation de la variance d’échantillon facilite le problème d’optimisation et
permet l’utilisation de la descente de gradient stochastique. Cependant, le paramètre λ de la
régularisation L2 souffre des mêmes limitations et le principe ne peut pas produire de meilleures
politiques. Les résultats empiriques démontrent que ces principes échouent parfois à améliorer la
politique π0 (Chen et al., 2019b). Ces limites seront développées dans la section suivante, avant
que nous ne présentions les contributions de la première partie de la thèse. Le chapitre 3 recadre
CRM en utilisant les outils de Distributionnally Robust Optimisation (Duchi et al., 2021),
un cadre statistique conçu pour la prise de décision face à l’incertain. En outre, les chapitres 4
et 5 s’appuient sur les travaux de London and Sandler (2019) et poursuivent le développement
des outils PAC-Bayésien (McAllester, 1998) pour le bandit contextuel hors ligne. L’analyse
produit des principes qui sont plus faciles à optimiser, ne nécessitent pas d’hyperparamètres
supplémentaires à régler et bénéficient, pour certains, de meilleures garanties de performance,
ce qui nous rapproche de l’apprentissage de politiques améliorant π0 hors ligne.

Dans le monde réel, les systèmes interactifs sont souvent confrontés à des scénarios à grande
échelle, dans lesquels ils doivent apprendre à partir d’un nombre considérable d’interactions
(n≫ 1) et opérer sur des catalogues massifs (|A| ≫ 1). Pour que ces systèmes puissent fournir
des recommandations en quelques millisecondes, ils sont limités à une certaine structure (Shri-
vastava and Li, 2014; Aouali et al., 2022) afin de permettre une réponse rapide aux requêtes.
Pendant longtemps, les systèmes de recommandation à grande échelle ont été formés à la prédic-
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tion des préférences (Harper and Konstan, 2015; Gomez-Uribe and Hunt, 2016) ou à la prédiction
de l’élément suivant (Hidasi et al., 2015; Wu et al., 2019). Ces approches de modélisation sont
généralement considérées comme de piètres substituts à la récompense que nous souhaitons op-
timiser (Jannach and Jugovac, 2019). L’adaptation de la boîte à outils de bandits contextuels
hors ligne à l’apprentissage de systèmes de recommandation à grande échelle aura un impact
considérable sur le secteur. Ces outils peuvent permettre d’aligner les recommandations sur des
signaux de récompense complexes, améliorant ainsi la satisfaction des utilisateurs et la rentabil-
ité des entreprises qui développent ces systèmes. Comme nous l’avons vu précédemment, nous
pouvons soit adopter la méthode directe si nous savons comment modéliser la récompense, soit
utiliser des principes d’apprentissage avec des estimateurs d’échantillonnage préféren-
tiel pour apprendre une politique directement. Ces deux méthodes permettent d’apprendre de
manière fiable un système de recommandation performant. Malheureusement, ces méthodes,
dans leur forme simple, présentent des inconvénients lorsqu’elles traitent des problèmes à grande
échelle. La deuxième partie de la thèse aborde ces limitations et permet un apprentissage efficace
et rapide des systèmes de recommandation à grande échelle.

La méthode directe repose entièrement sur notre capacité à apprendre un modèle qui reflète
les propriétés de la récompense. La compréhension parfaite du problème réduit le biais lié à la
modélisation, mais il existe un autre problème, lié à l’apprentissage à partir de Dn, qui devient
plus prononcé dans les scénarios à grand catalogue. En effet, l’apprentissage naïf du modèle de
récompense à partir de Dn souffre du déséquilibre présent dans les données collectées. Le modèle
de récompense sera bien estimé pour les actions qui sont susceptibles d’être échantillonnées sous
π0, et mal estimé pour le reste. Cette différence dans la qualité de l’estimation peut rendre les
décisions prises par la politique dérivée peu fiables (Smith and Winkler, 2006). Ce phénomène
est accentué lorsqu’on a affaire à des catalogues de grande taille, car π0 ne peut jamais collecter
suffisamment d’échantillons pour couvrir l’ensemble de l’espace d’action. Nous consacrons le
chapitre 6 à l’examen d’une solution bayésienne à ce problème. Nous introduisons une structure
au modèle et utilisons une autre source de données pour apprendre efficacement le modèle de
récompense. Plus de détails sur cette approche peuvent être trouvés dans la section contribution.

Les objectifs d’échantillonnage préférentiel deviennent intéressants lorsque le signal de récom-
pense est complexe. Toutefois, dans les scénarios à grande échelle, ces objectifs d’apprentissage
souffrent de deux problèmes majeurs. Le premier problème est lié à la variance de ces estima-
teurs, qui augmente avec la taille de l’espace d’action. En effet, la variance des estimateurs
courants (Horvitz and Thompson, 1952; Ionides, 2008; Dudík et al., 2014) devient incontrôlable
lorsque les politiques opèrent sur des catalogues massifs (Saito and Joachims, 2022b). Comme
cette variance peut être très importante, l’ajout d’une pénalisation de la variance, par exemple,
obligera la politique nouvellement apprise π à imiter le comportement de π0. Ce phénomène
rend nos principes d’apprentissage trop conservateurs, en renvoyant des politiques très proches
de π0. Cette observation a motivé la construction d’une nouvelle famille d’estimateurs (Saito
and Joachims, 2022a; Saito et al., 2023) pour atténuer ce problème de variance. Ces contribu-
tions récentes traitent des limites statistiques des objectifs d’échantillonnage préférentiel dans
les scénarios à grand catalogue, mais les problèmes de temps de calcul liés à l’optimisation de ces
objectifs restent non résolus. Les systèmes à grande échelle sont fréquemment mis à jour, et des
routines d’optimisation rapides sont hautement souhaitables dans ce contexte. Les méthodes
existantes proposent des itérations de gradient dont l’échelle est au moins linéaire sur la taille
du catalogue. Cette complexité peut être préjudiciable à l’apprentissage des systèmes de recom-
mandation fonctionnant sur des milliards d’éléments. Les deux derniers chapitres (chapitres 7
et 8) se concentrent sur l’aspect computationnel et proposent des routines d’optimisation avec
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des complexités sous-linéaires. Ces solutions seront développées plus en détail dans la section
contribution.

Dans cette thèse, nous couvrons différentes disciplines connectées, tout en équilibrant les outils
théoriques et les algorithmes pratiques. Pour faciliter la présentation, nous souhaitons donner
aux lecteurs un aperçu de l’avancement de chaque domaine de recherche. À cette fin, nous
consacrons un chapitre à l’examen de la littérature existante, que nous jugeons utile pour tout
chercheur.

Chapter 2. Literature Review. Ce chapitre présente une revue de la littérature couvrant
ainsi les différents outils utilisés tout au long de cette thèse. Nous donnons un bref aperçu de
la littérature sur le Bandit Contextuel, un formalisme pratique pour étudier la recommandation
basée sur la récompense, en présentant à la fois ses formulations en ligne et hors ligne. En
nous concentrant sur le cadre hors ligne, nous consacrons une section à la présentation des
outils d’apprentissage statistique, nécessaires à l’étude des systèmes de décision d’apprentissage
avec des garanties de performance. Nous présentons ensuite le développement des systèmes
de recommandation et la manière dont la modélisation de la recommandation est passée de
la prédiction des préférences à la maximisation de la récompense, et nous concluons par les
considérations algorithmiques qui se posent dans le contexte de la prise de décision à grande
échelle.

Part I - Offline Learning with Performance Guarantees. La première partie de la
thèse se concentre sur les limites des principes d’apprentissage actuels. Ces principes ont été
proposés pour améliorer la politique d’enregistrement π0, en atténuant les problèmes liés à
l’échantillonnage préférentiel. Sans perte de généralité, nous présentons le problème à l’aide du
IPS : Inverse Propensity Scoring (Horvitz and Thompson, 1952), sans doute l’estimateur le plus
simple et le plus étudié. Pour une politique π, nous rappelons son expression :

R̂
IPS
n (π) = − 1

n

n∑︂
i=1

π(ai|xi)
π0(ai|xi)

ri.

Lorsqu’elle est évaluée sur π0, IPS donne la moyenne empirique des coûts collectés en tant
qu’estimation du risque, ce qui est considéré comme un estimateur sans biais de R(π0). Toutefois,
une simple analyse de la variance de cet estimateur montre que le fait de s’éloigner de π0 entraîne
une baisse de la qualité de l’estimation. Si la récompense observée est bornée (par exemple,
r ∈ [0, 1]), nous avons :

V
[︂
R̂

IPS
n (π)

]︂
= 1
n

(︄
Ex∼ν,a∼π0(·|x),r∼p(·|x,a)

[︄(︃
π(a|x)
π0(a|x)

)︃2
r2
]︄
− Ex∼ν,a∼π(·|x) [r̄(a, x)]2

)︄

≤ 1
n
Ex∼ν,a∼π0(·|x),r∼p(·|x,a)

[︄(︃
π(a|x)
π0(a|x)

)︃2]︄
= 1
n

(︂
χ2(π, π0) + 1

)︂
,

avec χ2(π, π0) la divergence χ-deux entre π et π0. La variance a à peu près le même com-
portement que la divergence χ-deux, augmentant lorsque π s’éloigne de π0. En particulier, la
variance augmente avec les poids d’importance. Les poids d’importance sont très élevés lorsque
la nouvelle politique π attribue une forte probabilité à des actions qui étaient très peu sus-
ceptibles d’être jouées sous π0. Cela signifie que la qualité de l’estimation dépend fortement
de la politique évaluée π, ce qui rend IPS1 indigne de confiance pour les politiques éloignées

1Tous les estimateurs basés sur les poids d’importance souffrent de la même limitation.
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du voisinage de π0. Cette observation est confirmée dans la pratique, en particulier lorsque
l’on utilise ces estimateurs comme objectif d’apprentissage. Par exemple, la minimisation de
l’estimateur IPS par rapport à une classe de politiques peut conduire à des politiques ayant de
mauvaises performances en ligne. Lorsque la politique apprise π est éloignée de π0, l’estimation
IPS du risque de π ne reflète pas son risque réel, car π se trouve dans une partie de l’espace
qui induit un estimateur avec une grande variance. Pour contourner ces limitations, il faudrait
restreindre l’optimisation aux politiques autour de la politique π0. Le CRM : Minimisa-
tion du risque contrefactuel (Swaminathan and Joachims, 2015a) formalise cette idée en
utilisant des arguments d’apprentissage statistique. Motivé par la construction d’une borne
empirique de type Bernstein (Maurer and Pontil, 2009), le principe préconise la minimisation
de l’estimateur IPS pénalisé par sa variance. Ce principe est ensuite utilisé pour produire un
algorithme d’apprentissage de politiques "softmax" (Mei et al., 2020b) de la forme :

∀(x, a) πθ(a|x) = softmaxA (fθ(x, a))

= exp(fθ(x, a)∑︁
a′∈A exp(fθ(x, a′)) . (1)

avec θ un paramètre provenant d’un espace paramétrique θ ∈ Θ et fθ : X × A une fonction
qui encode la pertinence de l’action a par rapport au contexte x. L’algorithme proposé est
appelé POEM : Policy Optimizer for Exponential Models (Swaminathan and Joachims, 2015a)
et résout l’objectif suivant pour les politiques softmax :

arg min
θ∈Θ

{︃
R̂

IPS
n (πθ) + λ

√︂
V̂

IPS(πθ)
}︃
,

avec λ un hyperparamètre généralement défini à l’aide de données de validation, et V̂ IPS(πθ) la
variance empirique induite par l’évaluation de π avec IPS :

V̂
IPS(πθ) = 1

n− 1

n∑︂
i=1

(︃
π(ai|xi)
π0(ai|xi)

ri + R̂
IPS
n (πθ)

)︃2
.

Swaminathan and Joachims (2015a) a démontré empiriquement la supériorité de ce principe ; les
politiques renvoyées par POEM présentent un risque beaucoup plus faible que celles obtenues en
minimisant naïvement l’objectif IPS. L’ajout de la régularisation rend l’approche plus fondée,
mais souffre encore de limitations qui réduisent son applicabilité dans les scénarios de la vie
réelle:

(1) Mise à l’échelle. La plus grande limitation du principe CRM est sa capacité à s’adapter
à de grands ensembles de données Dn. La présence du terme de variance fait que le calcul du
gradient de l’objectif CRM se fait en O(n), en termes de coûts de calcul et de mémoire, car il
nécessite de parcourir l’entièreté des données. Dans un scénario de système de recommanda-
tion, des millions d’interactions sont enregistrées chaque jour. Ces applications traitent un très
grand nombre d’échantillons n et ne peuvent se permettre ce coût de calcul. Ce problème est
généralement résolu en recourant à un algorithme d’optimisation stochastique, qui ne nécessite
qu’un accès aux gradients stochastiques non biaisés de l’objectif. Ceux-ci sont particulièrement
faciles à obtenir lorsque l’objectif se décompose en une somme sur les entrées de l’ensemble de
données, car il suffit de calculer la somme sur des lots pour obtenir des gradients non biaisés.
Malheureusement, l’objectif CRM n’est pas adapté à l’optimisation stochastique, car le terme
de pénalisation ne s’écrit pas comme une somme. Swaminathan and Joachims (2015a) a proposé
une relaxation de l’objectif CRM, basée sur une stratégie de minimisation/majoration, qui peut
bénéficier partiellement des gradients stochastiques. Leur approche nécessite toujours de passer
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par l’ensemble des données enregistrées de temps à autre, ce qui permet d’obtenir une procédure
d’une complexité informatique identique.

London and Sandler (2019) propose un principe amélioré qui traite de la première limitation
du CRM. Au lieu de s’appuyer sur la borne empirique de type Bernstein (Maurer and Pontil,
2009), London and Sandler (2019) adapte la borne PAC-Bayesienne de McAllester (2003) pour
dériver des objectifs d’apprentissage pour ce problème. Le principe obtenu motive l’utilisation
d’une régularisation L2 vers le paramètre θ0 de la politique π0. Cette régularisation est contrôlée
par un hyperparamètre λ, ce qui donne le problème d’optimisation suivant pour les politiques
softmax paramétrées :

arg min
θ∈Θ

{︂
R̂

IPS
n (πθ) + λ∥θ − θ0∥2

}︂
,

L’objectif d’optimisation se prête à l’optimisation stochastique (décomposable en une somme),
s’adapte à de grands ensembles de données et produit des politiques avec de meilleures per-
formances empiriques. Cependant, ce principe, comme le CRM, souffre d’autres limitations,
présentées ci-après :

(2) Pas de garanties de performance. Les deux principes dérivés sont motivés par la
construction de bornes couvrant le risque réel des politiques. Ces bornes, dans leur forme
brute, ne peuvent pas être utilisées directement comme objectif d’apprentissage. En effet, la
borne dérivée dans Swaminathan and Joachims (2015a) contient des quantités théoriques et
celle dérivée dans London and Sandler (2019) donne une couverture triviale. L’introduction de
l’hyperparamètre λ permet d’obtenir des objectifs pratiques, qui perdent les garanties théoriques
données par les bornes initiales. Ces objectifs ne couvrent pas nécessairement le risque réel, et
leur optimisation peut conduire à des politiques pires que π0. Des preuves empiriques peuvent
être trouvées dans (Chen et al., 2019b) où le principe CRM ne parvient pas à améliorer π0.

(3) Rajout d’hyperparamètre. Un autre problème majeur de ces principes est également
causé par l’introduction de λ et sa sélection. Le paramètre libre λ nécessite un réglage minutieux,
car son choix a un impact considérable sur les performances de la politique obtenue. Comme
il n’existe pas de lignes directrices théoriques pour définir une bonne valeur de λ, la stratégie
consiste à procéder à une validation croisée du paramètre sur une grille relativement fine en
utilisant l’estimateur IPS. La validation croisée ajoute à la complexité de l’algorithme. Cette
procédure nécessite également de disposer d’un ensemble de validation qui ne sera pas utilisé
pour l’apprentissage, ce qui accentue le problème de la variance. En outre, comme l’estimateur
IPS est toujours utilisé pour sélectionner la meilleure valeur de λ, la politique renvoyée à la
fin est celle qui minimise le risque IPS sur l’ensemble de validation, ce qui rend l’ensemble du
principe incohérent.

L’objectif de cette première partie est de fournir aux praticiens de meilleurs principes qui con-
tournent complètement ces limitations, en bénéficiant de meilleures garanties statistiques et de
performances empiriques.

Chapter 3. Offline Learning with Distributionally Robust Optimization. Dans ce
chapitre, nous présentons une formulation alternative au principe CRM en recourant au cadre de
l’optimisation distributionnellement robuste (DRO) (Duchi et al., 2021). Ces outils permettent
de construire élégamment des intervalles de confiance sensibles à la variance sur le vrai risque
en utilisant des ensembles d’ambiguïté basés sur la f -divergence. Nous appliquons ce principe



Contents 17

au problème de l’évaluation et de l’optimisation des politiques hors ligne. L’objectif résultant
traite des limites (1) et (3) ; il bénéficie des mêmes garanties statistiques que le CRM, peut être
calibré automatiquement en utilisant des arguments de couverture asymptotique et se prête à
l’optimisation stochastique. Nous présentons des expériences numériques solides montrant que
l’approche proposée traite efficacement les lacunes de la CRM. Ce chapitre est adapté de la
publication suivante :

• Otmane Sakhi, Louis Faury, and Flavian Vasile (2020b). Improving Offline Contextual
Bandits with Distributional Robustness. Proceedings of the ACM RecSys Workshop on
Reinforcement Learning and Robust Estimators for Recommendation Systems, 2020.

Chapter 4. Offline Learning with PAC-Bayesian Theory. Dans ce chapitre, nous remet-
tons complètement en question le paradigme de l’apprentissage hors politique et préconisons
une stratégie théoriquement fondée pour améliorer avec certitude la politique déployée π0. La
méthode proposée consiste à créer des bornes inférieures de la quantité d’améliorations uiv-
ante I(π) = R(π0) − R(π), et à déployer de nouvelles politiques uniquement lorsque nous
sommes sûrs que I(π) > 0. Nous basons notre approche sur la théorie de l’apprentissage PAC-
Bayesien (Alquier, 2021) et démontrons que ses outils conviennent parfaitement au problème
de l’apprentissage hors ligne. En particulier, en interprétant les politiques comme des mélanges
de règles de décision, nous dérivons une borne PAC-Bayesienne étroite, de type Bernstein, qui
rend notre stratégie viable. La stratégie résultante traite les trois limitations ; nous montrons
que l’algorithme résultant peut donner des certificats d’amélioration, se prête à l’optimisation
stochastique et ne nécessite aucun réglage d’hyperparamètre, ce qui constitue un grand pas en
avant vers la réalisation d’un apprentissage hors politique pratique avec de véritables garanties
de performance. Ce chapitre est basé sur la publication suivante :

• Otmane Sakhi, Pierre Alquier, and Nicolas Chopin (2023a). PAC-Bayesian Offline Con-
textual Bandits with Guarantees. Proceedings of the 40th International Conference on
Machine Learning, 2023.

Chapter 5. A Better PAC-Bayesian Analysis of Offline Learning. Dans ce chapitre,
nous poursuivons le développement de l’analyse PAC-Bayesienne du problème de l’apprentissage
hors ligne des politiques. En exploitant la nature négative du risque, nous dérivons de nouvelles
bornes plus étroites qui s’appliquent à une classe plus large d’estimateurs de risque. L’idée
est basée sur un traitement raffiné de la fonction génératrice de moments du risque et étend
les limites empiriques de Bernstein à des ordres supérieurs. La particularité de ces résultats
est qu’ils sont entièrement empiriques ; nous ne supposons pas l’accès à π0 contrairement aux
bornes dérivées précédemment. Nous observons que nos résultats peuvent donner de meilleures
garanties et nous permettent d’obtenir de nouvelles informations sur les estimateurs utilisés. Ce
chapitre se concentre sur la fourniture de résultats techniques et est basé sur un travail non
publié.

Part II - Offline Learning of Large Scale Recommendation. L’apprentissage hors ligne
offre des solutions pratiques pour aligner efficacement les systèmes de décision sur des signaux
de récompense complexes. Si la communauté des chercheurs s’est concentrée sur l’amélioration
des estimateurs et des paradigmes d’apprentissage existants, peu d’attention a été accordée à
l’adaptation de ces approches au contexte des grands espaces d’action. Ceci est intéressant
pour les moteurs de recherche d’apprentissage, les systèmes de recommandation et pratique-
ment toutes les applications où le nombre d’interactions n et la taille de l’espace d’action |A|
sont massifs. Le principal défi dans ces applications est de concevoir des règles de décision qui
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satisfont aux contraintes d’ingénierie, tout en fournissant des algorithmes pratiques qui per-
mettent leur alignement avec les signaux de récompense d’une manière rapide et fiable. Les
moteurs de recherche doivent répondre aux requêtes en quelques millisecondes, et les systèmes
de recommandation du monde réel (pensez à une plateforme de streaming vidéo) doivent rem-
plir de manière rapide la page d’accueil avec du contenu. Ces contraintes de vitesse doivent être
respectées même si le catalogue (espace d’action) contient des milliards d’éléments. Un autre
aspect à prendre en considération est que ces systèmes sont fréquemment mis à jour, ce qui
impose une contrainte considérable sur le temps d’apprentissage de ces systèmes. En effet, si
nous devons mettre à jour notre système de décision quotidiennement sur la base de ses inter-
actions, le temps d’apprentissage devrait être nettement inférieur à unjour car il faut collecter
suffisamment d’interactions et mettre à jour le système dans le même laps de temps. Dans leurs
implémentations naïves, la prise de décision et l’apprentissage de ces systèmes sont linéairement
proportionnels à la taille de l’espace d’action O(|A|), ce qui n’est pas possible dans les scénarios
d’espace d’action massif. Dans ce qui suit, nous développons la discussion autour de ces deux
aspects importants et présentons nos contributions dans ce domaine.

Prise de décision rapide. La politique déployée permet de répondre à une requête ou de
fournir des recommandations précises. Quelle que soit la nature de la politique et de sa mise
en œuvre, cette étape se résume généralement à l’identification rapide d’un sous-échantillon de
taille K ≥ 1 de bonnes actions (Chen et al., 2019a) à partir de l’espace d’action potentiellement
massif. En règle générale, et pour un utilisateur x, la qualité des actions est encodée dans la
fonction de score fθ(·, x) : A → R tandis que les bonnes actions sont identifiées en trouvant les
actions ayant le meilleur score, en résolvant le problème suivant :

[a1, ..., aK ] =
K

arg sort
a′∈A

{︁
fθ(a′, x)

}︁
, (2)

avec l’opérateur arg sortKa′∈A qui renvoie les K actions les mieux notées. Cette opération de
tri a une complexité linéaire sur la taille de l’espace des actions O(|A| logK) et ne peut pas
être adoptée dans un environnement de production à grande échelle. La solution courante pour
réduire cette complexité consiste à imposer une structure à la fonction de score. En limitant
l’espace de la fonction de score à ce qui suit :

∀(x, a) fθ(a, x) = hΞ(x)⊺βa

avec θ = [Ξ, β], la fonction de score devient un produit scalaire entre une transformation du
contexte hΞ(x) et une transformation de l’action βa, tous deux résidant dans un espace latent
Rl de dimension l ≪ |A|. Avec cette structure, l’équation (2) peut être résolue en approximant
MIPS : Maximum Inner Product Search (Shrivastava and Li, 2014) dans une complexité tem-
porelle de O(log |A|) au lieu de O(|A|), ce qui rend possible une prise de décision rapide sans
considérations supplémentaires.

Apprentissage efficace pour la méthode directe. La méthode directe dérive une politique
optimale, qui identifie pour chaque contexte les actions ayant le meilleur score selon le modèle
de récompense rM. Cela signifie que si rM est correctement paramétré, une prise de décision
rapide est possible. L’apprentissage d’un bon modèle rM nécessite une excellente compréhension
du problème sous-jacent et est généralement obtenue par maximum de vraisemblance (Aouali
et al., 2023b) ou des heuristiques de classement (Rendle et al., 2009), qui sont des méthodes
dont l’apprentissage est indépendant de la taille de l’espace d’action. Ces algorithmes peuvent
toutefois présenter d’autres lacunes si nous ne prenons pas garde aux particularités de ce cadre.
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Dans les scénarios à grand espace d’action, il est impossible pour la politique déployée de collecter
suffisamment d’interactions pour chaque action dans A. Le signal de récompense est inégalement
réparti, car la majorité des données collectées proviennent d’actions très probables sous π0 et
peu ou pas de données sont disponibles pour le reste des actions. Cela signifie que si nous
utilisons le principe du maximum de vraisemblance, la qualité du modèle appris rM dépendra
de la paire contexte/action ; l’estimation est précise pour les paires action/contexte qui sont
suffisamment présentes dans les données. Ce déséquilibre dans la qualité de l’estimation a un
impact négatif sur la politique dérivée, car les décisions basées sur le MLE peuvent souffrir
d’une déception post-décisionnelle (Smith and Winkler, 2006). L’un des moyens d’atténuer ce
problème est de l’inscrire dans le cadre de la théorie de la décision Bayesienne (West et al.,
2021). Par exemple, Jeunen and Goethals (2021) démontre que même une simple modélisation
bayésienne de la récompense permet d’améliorer le comportement des politiques. Avec l’aide
de distribution à priori bien choisis, cette formulation peut également intégrer des corrélations
supplémentaires entre les contextes et les actions, ce qui rend l’apprentissage encore plus efficace
(Aouali et al., 2023c). Cependant, le principal défi de la modélisation bayésienne est d’ordre
computationnel ; l’approximation des distributions à posteriori sur des milliards d’interactions,
à l’aide de modèles, est difficile et nécessite un soin particulier (Chopin and Papaspiliopoulos,
2020). Nous consacrons un chapitre à cette discussion et construisons un modèle de récompense
bayésien pour la recommandation en utilisant des à priori bien construit, tout en fournissant
des outils appropriés pour accélérer son apprentissage dans des applications à grande échelle.

Chapter 6. Scalable Bayesian Reward Modelling. Dans ce chapitre, nous empruntons la
voie de la méthode directe et développons un modèle bayésien de la récompense dans le cas de la
recommandation d’un seul article. Nous reconnaissons la présence de deux types de signaux dans
les problèmes de recommandation : les signaux organiques et les signaux de bandits. Alors que
nous conditionnons notre modèle au retour bandit, les interactions organiques entre les contextes
et les actions nous aident à construire une distribution a priori qui incorpore trois similarités :
la similarité contexte-action, la similarité action-action et la similarité contexte-contexte. Ces
similarités nous permettent d’obtenir de bonnes estimations de la récompense dans toutes les
régions de l’espace, même pour les actions et les contextes les moins explorés. Le modèle
proposé est flexible, utilise efficacement les données existantes mais produit une distribution à
posteriori intraitable. Nous fournissons des outils computationnels faciles à mettre en œuvre
pour approximer sa solution en nous basant sur des approches variationnelles (Blei et al., 2017).
L’algorithme résultant s’adapte à de grands ensembles de données, peut apprendre efficacement
dans différents scénarios et bénéficie de la paramétrisation du produit scalaire, ce qui permet
une prise de décision rapide. Ce chapitre est basé sur la publication suivante :

• Otmane Sakhi, Stephen Bonner, David Rohde and Flavian Vasile (2020a). BLOB: A Prob-
abilistic Model for Recommendation that Combines Organic and Bandit Signals. KDD ’20:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining.

Apprentissage rapide avec les estimateurs d’échantillonnage préférentiel Dans notre
quête d’algorithmes évolutifs d’apprentissage de politiques hors ligne, nous exprimons également
notre intérêt pour les paradigmes d’apprentissage basés sur l’échantillonnage préférentiel. Cette
approche apprend une politique directement, et même les opérations simples impliquent le calcul
de sommes sur l’ensemble de l’espace d’action. En particulier, nous devons être très prudents
lorsque nous calculons/approximons les gradients de nos objectifs, car cette opération se cal-
cule linéairement dans |A|, ce qui peut ralentir considérablement la routine d’optimisation. La
question de la mise à l’échelle des objectifs généraux d’apprentissage hors politique a attiré
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peu d’attention ; Chen et al. (2019a) a appris une politique prête pour la production avec un
objectif basé sur IPS sans se préoccuper de l’aspect computationnel. Nous nous intéressons
à cette question et souhaitons fournir des méthodes d’accélération générales. Nous étudions
la famille spécifique d’objectifs qui peuvent être écrits comme des espérances sous la politique
évaluée. Cette famille comprend les estimateurs couramment adoptés (Horvitz and Thomp-
son, 1952; Dudík et al., 2014; Wang et al., 2017; Saito and Joachims, 2022a; Saito et al., 2023;
Aouali et al., 2023a), et les nouveaux objectifs d’apprentissage (London and Sandler, 2019; Sakhi
et al., 2023a). Nous commençons par étudier l’accélération de cette famille spécifique d’objectifs
d’apprentissage et fournissons des procédures d’optimisation en temps logarithmique pour les
politiques à article unique, en nous concentrant particulièrement sur les politiques paramétrées
avec la fonction de lien softmax.

Chapter 7. Fast Offline Learning for One-Item Recommendation. Dans ce chapitre,
nous nous attachons à fournir une méthode pour accélérer l’apprentissage des politiques de soft-
max à produit scalaire pour un large panel d’objectifs. Nous identifions les problèmes posés par
les gradients couramment adoptés et proposons une solution basée sur trois ingrédients : une
nouvelle formule de gradient de covariance, l’exploitation de la structure MIPS : Maximum Inner
Product Search dans la phase d’apprentissage et la conception d’outils Monte Carlo appropriés
(Chopin and Papaspiliopoulos, 2020) pour obtenir des approximations accélérées. Il en résulte
un algorithme d’apprentissage avec des mises à jour de gradient sous-linéaires (logarithmiques
ou constantes). Nous menons des expériences approfondies sur des ensembles de données de
recommandation à grande échelle et démontrons l’impact de notre approche ; la méthode pro-
posée est jusqu’à 25 fois plus rapide que la méthode de base tout en produisant des politiques
de qualité similaire. Ce chapitre est basé sur la publication suivante :

• Otmane Sakhi, David Rohde, and Alexandre Gilotte (2023c). Fast Offline Policy Opti-
mization for Large Scale Recommendation. Proceedings of the 37th AAAI Conference on
Artificial Intelligence, AAAI 2023.

Après avoir abordé le problème de l’apprentissage de systèmes de décision à grande échelle
à un élément avec des objectifs linéaires, nous étendons notre analyse au cas plus difficile de
l’apprentissage de systèmes de décision à ardoise. Au lieu de jouer une action, nos politiques
doivent délivrer des ardoises, une liste ordonnée d’éléments de taille K ≥ 1. Cela signifie que nos
règles de décision et nos politiques sont construites pour agir sur l’espace combinatoire SK de
permutations tronquées à K. La taille de cet espace est O(|A|K) et rend les opérations de base,
du calcul d’une moyenne à la recherche de la meilleure ardoise, infaisables. Nous nous concen-
trons sur une famille de systèmes de décision qui réduisent l’espace de recherche de l’ensemble
combinatoirement grand des ardoises SK à l’espace d’action original A. Pour un contexte donné
x, cette réduction consiste à attribuer un score fθ(a, x) à chaque action a et à recommander
une liste composée des K premiers éléments ayant les scores les plus élevés. Cela conduit à un
temps de livraison de O(log |A|) lorsque nous adoptons la structure de produit scalaire pour
fθ(a, x). Aouali et al. (2023b) propose une méthode directe pour apprendre les systèmes de
recommandation d’ardoises à grande échelle. Dans le chapitre suivant, nous présentons les défis
posés par l’apprentissage des systèmes de décision en ardoise et proposons des solutions pour
accélérer leur apprentissage.

Chapter 8. Fast Offline Learning for Slate Recommendation. Dans ce chapitre, nous
nous concentrons sur l’accélération de l’apprentissage des politiques d’ardoise, un élément om-
niprésent des systèmes en ligne modernes. Nous commençons par présenter le problème et
par analyser les algorithmes existants, leurs hypothèses communes et leurs limites. Nous pro-
posons ensuite une nouvelle classe d’algorithmes, basée sur une nouvelle relaxation qui traite
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élégamment les contraintes à grande échelle. La méthode résultante fonctionne avec des récom-
penses arbitraires, possède de meilleures propriétés statistiques tout en réalisant des mises à jour
d’apprentissage sous-linéaires. Nous menons des expériences à grande échelle et démontrons que
l’approche proposée est plus rapide de plusieurs ordres de grandeur que les lignes de base, tout
en produisant des politiques plus performantes. Ce chapitre est basé sur la publication suivante:

• Otmane Sakhi, David Rohde, and Nicolas Chopin (2023b). Fast Slate Policy Optimization:
Going Beyond Plackett-Luce. Transactions on Machine Learning Research.



Chapter 1

Introduction

1.1 Overview
This manuscript presents recent contributions, ranging from theory to large scale applications, to
an offline formalism of the problem of sequential decision-making under uncertainty. An impor-
tant problem with numerous real-world applications where a decision maker, tasked with solving
a specific goal, interacts with an unknown environment, log these interactions and leverage them
in order to better solve the task. In this context, we want to answer the following:

How can we leverage previous interactions of the decision-maker to improve its performance?

Answering this question can have a big impact on real world practical problems. For example,
it may help a charity online marketing campaign get more donations for a good cause, it may be
of service to doctors improving the quality of drug prescription, or it may simply improve the
recommendation quality of your favourite music streaming service making it easier to discover
new artists. In this introduction, we showcase the problem of learning decision-makers using the
example of recommendation, as it will be the focus of a big part of this thesis. Recommender
systems are the backbone of the modern internet experience. In each interaction, these systems
silently navigate an overwhelming amount of information and filter it to cater to the specific
needs of the user. An interaction of a recommendation engine can be summarized in the follow-
ing: the system encounters a user, the system chooses an item (or multiple items) to recommend
from a potentially large catalogue and observes a feedback.

The feedback received is valuable as it represents successes and failures of past interactions.
These interactions are logged and are later used to improve the recommendation quality of the
system. The interactive nature of the collected dataset makes common learning paradigms, such
as supervised learning, not adapted to study such problem. Recently, there has been an interest
in adapting sequential decision-making framework to improve recommendation based on the log
of interactions. Reinforcement learning (RL) (Sutton and Barto, 2018) and Contextual bandits
(CB) (Lattimore and Szepesvári, 2020) start to take the spotlight as good candidates to model
this learning problem. The RL framework builds on the idea that performed actions may impact
the environment. This paradigm can model complex sequential decision problems, is versatile
and allows for planning. Its tools can optimize recommender systems for long term metrics;
for example, increase user engagement and retention (Afsar et al., 2022). This versatility how-
ever comes with a cost. Taking into account the long term effects of recommendation on users
makes the analysis more difficult, prompting us to consider a simpler formalism. Contextual
Bandit offers a useful compromise between principled analysis and practical impact. Its under-
lying assumption is that actions made by the system do not influence future outcomes. If this

22
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xi ai ri

i ∈ [n]

Figure 1.1: The logged dataset Dn representing n interactions of the recommender system. All
(context, action, reward) triplets are independent.

formulation is less compelling when dealing with delayed rewards (Afsar et al., 2022), its use
is reasonable if we want to focus on learning recommender systems that optimize short-term,
action-bounded metrics, such as click-through rate (Sakhi et al., 2020a) or watch time (Chen
et al., 2019a). In this thesis, we adopt the offline contextual bandits’ (Bottou et al., 2013;
Nguyen-Tang et al., 2022) toolbox to formalize learning from interaction logs. We give new
principled approaches to learn policies with strong performance guarantees and propose new
algorithms to widen the impact of this framework to large scale, real world applications.

An interaction of a user with a recommended item can be reduced to the following example.
A user navigates a website, the recommender system chooses an item from a catalogue and
shows it to the user, the user interacts with the item (either clicks or not) and the result of this
interaction is encoded in a feedback (presence/absence of click) that the system logs. Within the
Contextual Bandit framework, a user is represented by a context x, usually a real vector living
in a d-dimensional space X ⊆ Rd. These contexts, and thus users, are sampled independently
from the same, unknown distribution ν(X ). After seeing a user, the recommendation engine
delivers an item a from a catalogue A of size |A| ∈ N. The recommender system is modelled as
a policy π : X → P (A), which is a function that takes a context x and produces a distribution
π(·|x) over the space of possible actions A. Recommending an item a for the context x boils
down to sampling the item from the produced distribution a ∼ π(·|x). After delivering the item
a to the user of context x, our system receives feedback; a stochastic reward r ∈ R+ coming
from an unknown distribution p(·|x, a). This reward encodes how well the recommended item
has performed on our desired metric; the higher the reward, the higher the performance. Our
goal is to find policies of great performance, achieved by minimizing the risk, defined as the
expected negative reward under the actions of the policy. The risk of any given policy π can be
expressed as:

R(π) = −Ex∼ν,a∼π(·|x)
[︂
Er∼p(·|x,a)[r]

]︂
.

This risk is an expectation under actions taken by the policy evaluated. As we do not have access
to interactions of the new policy π with the environment, a simple way to estimate this quantity
is to let π interact with users online. In most scenarios, this is not possible, as we do not have the
luxury to deploy bad policies. In real world applications, we already have the current version of
our recommender system, represented by the policy π0, that interacts with the environment and
logs the feedbacks. Our primary focus is to assess how well a new iteration of the system will
improve upon the currently deployed version. A common way to achieve this is by conducting
online A/B-tests (Kohavi et al., 2012). This is considered the "gold standard" approach to
estimate the effect of replacing the current policy π0 by a potentially better one (Gupta et al.,
2019). A/B-tests however require substantial engineering effort, constant monitoring and need
several days to be properly analysed. Ideally, we want offline evaluation and learning tools
that can give us promising policies to reduce the number of unnecessary A/B-tests. When the
contextual bandit assumptions are satisfied, we can use the framework’s toolbox to achieve this
(Bottou et al., 2013). The idea is to leverage the existing interactions of π0 to find policies
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of greater performance. The interaction dataset is called in the literature the logged bandit
feedback dataset (Swaminathan and Joachims, 2015a):

Dn = {xi ∼ ν, ai ∼ π0(·|xi), ri ∼ p(·|xi, ai), π0(ai|xi)}i∈[n].

A graphical representation of the data is shown in Figure 1.1. The main challenge encountered
when learning from this data is the potential bias created by the collection procedure; we only
have access to the outcome of actions sampled from π0. The offline learning framework of con-
textual bandit offers two distinct approaches to solve this issue; the model-based approach and
the importance weighting approach.

The model-based approach or the direct method leverages the interaction data Dn to construct
a reward model (Sakhi et al., 2020a; Jeunen and Goethals, 2021). An optimal policy is then
naturally derived by playing for each context x, the action with the highest reward according
to the model. The direct method is straightforward to implement, as it reduces the learning to
a regression problem (Brandfonbrener et al., 2021). This approach is theoretically well-studied
and benefits from strong guarantees (Nguyen-Tang et al., 2022). However, it will suffer from
a substantial, uncontrolled bias whenever the reward is complex, making its efficiency entirely
dependent on our ability to model the problem’s structure. The direct method is efficient when
we are confident in our ability to understand the problem. When the reward signal is complex,
we may prefer another approach that does not completely rely on our modelling effort.

The Importance-weighting approach (Horvitz and Thompson, 1952; Bottou et al., 2013; Dudík
et al., 2014), often called off-policy learning, is agnostic to the reward model. It learns a new
policy π directly from the interactions Dn using estimators corrected with importance sampling
(Chopin and Papaspiliopoulos, 2020). Under mild assumptions (Horvitz and Thompson, 1952),
this method can produce unbiased estimators, which are arguably easier to analyse and opti-
mize (Ajalloeian and Stich, 2020). These estimators however suffer from a potentially large
variance once the learned policy drifts away from the logging policy π0, making them unreliable
for learning. It is empirically proven that learning with these estimators can result in bad per-
forming policies (Swaminathan and Joachims, 2015a,b), sometimes even worse than π0 (Chen
et al., 2019b; London and Sandler, 2019). This observation motivates the use of learning theory
tools (Zhou, 2002; McAllester, 1998) to come up with principled objectives that are agnostic
to the reward structure. The objective of this research effort is to produce new policies that
are provably better than the logging policy without engaging with the environment. This is
beneficial in production settings where we would like to propose a new system, that will improve
on the current production system with high probability.

The first effort in this direction was driven by Swaminathan and Joachims (2015a) and re-
sulted in the CRM: Counterfactual Risk Minimization principle. The CRM principle
builds on tools from Statistical Learning Theory (Vapnik, 1998), a framework that has great
success studying the generalization ability of learning algorithms. Motivated by the construc-
tion of an Empirical Bernstein Upper Bound (Maurer and Pontil, 2009) on the true risk of
policies, and using covering number arguments (Zhou, 2002), this principle advocates for pe-
nalizing importance weights estimators with their square-root sample variance. This penalty
is controlled by a hyperparameter λ that needs to be cross-validated on a hold-out set. The
underlying intuition is that to improve on the logging policy, we should look for policies that
have a small empirical risk while staying close to the logging policy π0. This principle results
in better performing policies compared to optimizing crude importance weighting estimators
(Swaminathan and Joachims, 2015a,b). However, its learning paradigm suffers from different
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limitations, hindering its applicability to simple scenarios. In particular, adding the sample
variance penalization makes the learning objective non-convex and non-decomposable, which
forbids the use of stochastic gradient methods. This penalty is also controlled with a new hy-
perparameter λ that is difficult to tune and adds to the complexity of the approach. Finally,
the CRM principle fails to provide performance certificates on the newly trained policy. These
limitations will be discussed in details later in the introduction. More recently, a new principle
was introduced to mitigate some of these limitations. By analysing this learning problem from
the PAC-Bayesian lens (McAllester, 1998; Alquier, 2021), London and Sandler (2019) develop an
improved approach. The authors build their analysis around McAllester (2003)’s PAC-Bayesian
bound. For parametric policies, this motivates an L2 regularization of the parameter of the
new policy towards the parameter of the logging policy π0. The regularization is also controlled
by a hyperparameter λ that requires tuning. This principle is based on the same intuition of
staying close to π0, but this time, it is carried out on the parameter space. The adoption of an
L2 regularization instead of a sample variance penalization makes the optimization smoother
and allows the use of stochastic gradient descent. However, the L2 regularization parameter
λ suffers from the same limitations and the principle cannot produce provably better policies.
Empirical findings demonstrate that these principles sometimes fail at improving the logging
policy π0 (Chen et al., 2019b). These limitations will be developed even further in the next
section, before we present the contributions of the first part of the thesis. Chapter 3 reframes
CRM using tools from Distributionally Robust Optimization (Duchi et al., 2021), a statis-
tical framework designed for decision-making under uncertainty. Furthermore, Chapters 4 and
5 build on London and Sandler (2019)’s work and continue the development of PAC-Bayesian
tools (McAllester, 1998) for offline contextual bandit. The analysis yields principles that are
easier to optimize, do not require additional hyperparameters to tune and enjoy, for some, even
better performance guarantees, taking us a step closer to learn provably better policies offline.

In real world problems, interactive systems often deal with large scale scenarios, where they
need to learn from enormous number of interactions (n≫ 1) and operate on massive catalogues
(|A| ≫ 1). For these systems to deliver recommendations in a matter of milliseconds, they are
restricted to a certain structure (Shrivastava and Li, 2014; Aouali et al., 2022) to allow for rapid
query response. For a long time, large scale recommender systems were trained for preference
prediction (Harper and Konstan, 2015; Gomez-Uribe and Hunt, 2016) or next-item prediction
(Hidasi et al., 2015; Wu et al., 2019). These modelling approaches are usually considered poor
proxies to the reward we are interested to optimize (Jannach and Jugovac, 2019). Adapting
the offline contextual bandit toolbox to learn large scale recommender systems will have a great
impact on the industry. These tools can enable the alignment of recommendation with complex
reward signals, enhancing both user satisfaction and the profitability of the businesses operating
these systems. As presented earlier, we can either adopt the direct method if we know how
to model the reward, or importance weighting estimators with learning principles to
learn a policy directly. Both can reliably learn a performing recommender system. Unfortu-
nately, these methods in their simple form present some caveats when dealing with large scale
problems. The second part of the thesis addresses these limitations and allows for efficient and
fast training of reward optimizing, large scale recommender systems.

The direct method relies completely on our ability to learn a model that reflects the prop-
erties of the reward. Understanding perfectly the problem lowers the bias linked to modelling,
but there is another problem, linked to learning from Dn, that becomes more pronounced in
large catalogue scenarios. Indeed, naively learning the reward model using Dn suffers from the
unbalance present in the collected data. The reward model will be well estimated for actions
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that are likely to be sampled under π0, and poorly estimated for the rest. This difference in
the estimation quality can make the decisions taken by the derived policy unreliable (Smith and
Winkler, 2006). This phenomenon is accentuated when dealing with large catalogue sizes, as π0
can never collect enough samples to cover the whole action space. We dedicate Chapter 6 to
discuss a Bayesian solution to this issue. We introduce structure to the model and use another
valuable source of data to efficiently learn the reward model. More details about this approach
can be found in the contribution section.

Importance-weighting objectives become interesting when the reward signal is complex. How-
ever, in large scale scenarios, these learning objectives suffer from two major caveats. The
first issue is linked to the variance of these importance-weighting estimators, which grows with
the size of the action space. Indeed, the variance of common importance weighting estimators
(Horvitz and Thompson, 1952; Ionides, 2008; Dudík et al., 2014) become uncontrollable when
the policies operate on massive catalogues (Saito and Joachims, 2022b). As this variance can
be very large, adding a variance penalization for example will force the newly learned policy π
to mimic the behaviour of π0. This phenomenon makes our learning principles too conserva-
tive, returning policies very close to π0. This observation motivated the construction of a new
family of importance weighting estimators (Saito and Joachims, 2022a; Saito et al., 2023) to mit-
igate this variance problem. These recent contributions deal with the statistical limitations of
importance-weighting objectives in large catalogue scenarios, but computational issues linked to
optimizing these objectives remain unsolved. The importance weighting approach learns policies
directly, and use gradient-based methods to computationally optimize the learning objectives.
Large scale systems are updated frequently, and fast optimization routines are highly desirable
in this context. Existing methods offer gradient iterations that scale at least linearly on the
catalogue size. This complexity can be detrimental to learning recommender systems operating
on billions of items. The last two chapters (Chapters 7 and 8) focus on the computational
aspect and propose optimization routines with sublinear complexities. These solutions will be
developed more in the contribution section.

We cover different, connected disciplines in this thesis while balancing between theoretical
tools and practical algorithms. To ease the presentation, we want to give readers an overview
of the advancement of each research field. To this end, we dedicate a chapter to review exist-
ing literature, that we deem valuable to researchers, whether they come from a theoretical or
practical background.

Chapter 2. Literature Review. This chapter conducts a literature review to cover the dif-
ferent tools used throughout this thesis. We give a brief overview of the literature of Contextual
Bandit, a practical formalism to study reward-driven recommendation, presenting both its on-
line and offline formulations. With a focus on the offline setting, we dedicate a section to present
statistical learning tools, necessary to study learning decision systems with online performance
guarantees. We then present the development of recommender systems and how modelling rec-
ommendation shifted from predicting preferences to reward maximization, and conclude with
the algorithmic considerations that arise in the context of large scale decision-making.

Part I - Offline Learning with Performance Guarantees. The first part of the thesis
focuses on addressing the limitations of current learning principles. These principles were pro-
posed to allow learning policies that improve on the logging policy π0, mitigating the problems
of importance weighting approaches. Without any loss of generality, we present the problem
with the help of the IPS: Inverse Propensity Scoring estimator (Horvitz and Thompson, 1952),
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arguably the simplest and most studied estimator. For a policy π, we recall its expression:

R̂
IPS
n (π) = − 1

n

n∑︂
i=1

π(ai|xi)
π0(ai|xi)

ri.

When evaluated on π0, IPS gives the empirical mean of the collected costs as an estimation of
the risk, which is considered to be a well-behaved, unbiased estimator of R(π0). However, a
simple analysis of the variance of this estimator demonstrates that drifting away from π0 leads
to poorer estimation quality. If the observed reward is bounded (i.e. r ∈ [0, 1]), we have:

V
[︂
R̂

IPS
n (π)

]︂
= 1
n

(︄
Ex∼ν,a∼π0(·|x),r∼p(·|x,a)

[︄(︃
π(a|x)
π0(a|x)

)︃2
r2
]︄
− Ex∼ν,a∼π(·|x) [r̄(a, x)]2

)︄

≤ 1
n
Ex∼ν,a∼π0(·|x),r∼p(·|x,a)

[︄(︃
π(a|x)
π0(a|x)

)︃2]︄
= 1
n

(︂
χ2(π, π0) + 1

)︂
,

with χ2(π, π0) the χ-Square divergence between π and π0. The variance has roughly the same
behaviour as the χ-Square divergence, growing when π is far from π0. In particular, the variance
grows with the importance weights. Importance weights are very large when the new policy
π assigns high probability to actions that were very unlikely to be played under π0. This
means that the estimation quality is highly dependent on the policy evaluated π, making IPS1

untrustworthy for policies far from the neighbourhood of π0. This observation is confirmed in
practice, especially when using importance weights-based estimators as a learning objective. For
example, minimizing the IPS estimator with respect to a policy class can lead to policies with
bad online performance. When the learned policy π is far from π0, the IPS estimation of the
risk of π will not reflect its true risk, as π will lie in a part of the space that induces an estimator
with large variance. To circumvent these limitations, one would want to restrict the optimization
to policies around the logging policy π0. The CRM: Counterfactual Risk Minimization
Principle (Swaminathan and Joachims, 2015a) formalizes this idea using statistical learning
arguments. Motivated by the construction of an Empirical Bernstein Bound (Maurer and Pontil,
2009) covering the true risk of policies in a class of policies, the principle advocates for minimizing
a sample variance penalized IPS estimator. This principle is then used to produce a tractable
algorithm for learning, parametrized softmax policies (Mei et al., 2020b) of the form:

∀(x, a) πθ(a|x) = softmaxA (fθ(x, a))

= exp(fθ(x, a)∑︁
a′∈A exp(fθ(x, a′)) . (1.1)

with θ a parameter coming from a parametric space θ ∈ Θ and fθ : X ×A → R a function that
encodes the relevance of action a to the context x. The algorithm proposed is named POEM:
Policy Optimizer for Exponential Models (Swaminathan and Joachims, 2015a) and solves the
following objective for softmax policies:

arg min
θ∈Θ

{︃
R̂

IPS
n (πθ) + λ

√︂
V̂

IPS(πθ)
}︃
,

with λ a tuning parameter usually set with the help of a validation split, and V̂
IPS(πθ) the

sample variance term induced by evaluating π with IPS:

V̂
IPS(πθ) = 1

n− 1

n∑︂
i=1

(︃
π(ai|xi)
π0(ai|xi)

ri + R̂
IPS
n (πθ)

)︃2
.

1All importance weights based estimators suffer from the same caveat.
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Swaminathan and Joachims (2015a) reported empirically the superiority of this principle; the
policies returned by POEM have much lower risk than those obtained by naively minimizing
the IPS objective. Adding the sample variance regularizer makes the approach more principled,
but still suffers from limitations that reduce its applicability in real-life scenarios:

(1) Scalability. The biggest limitation of the CRM principle is its scalability to large logged
datasets Dn. The presence of the sample variance term makes computing the gradient of the
CRM objective scale in O(n) in both computational and memory cost, as it requires going
through the entire dataset. In a recommender system scenario, millions of interactions are logged
daily. Such applications deal with extremely large number of samples n and cannot afford the
cost of these computations. This issue is usually solved by resorting to stochastic optimization
algorithm, which requires only access to unbiased stochastic gradients of the objective. Those
are particularly easy to obtain when the objective decomposes into a sum over the dataset’s
entries, as computing the sum on batches of the dataset is enough to obtain unbiased gradients.
Unfortunately, the CRM objective is not suited for stochastic optimization, as the square-root
empirical variance term does not write as a sum. Swaminathan and Joachims (2015a) proposed
a relaxation of the CRM objective, based on a majorization-minimization strategy, that can ben-
efit partially from stochastic gradients. Their approach still requires passing through the whole
logged dataset once in a while, obtaining a procedure of the same computational complexity.

London and Sandler (2019) propose an improved principle that deals with the first limitation of
CRM. Instead of relying on Maurer and Pontil (2009)’s Empirical Bernstein Bound, London and
Sandler (2019) adapts McAllester (2003)’s PAC-Bayesian bounds to derive learning objectives
for this problem. The derived principle motivates the use of an L2 regularization towards the
parameter θ0 of the logging policy π0. This regularization is controlled by a hyperparameter λ,
giving the following optimization problem for parametrized softmax policies:

arg min
θ∈Θ

{︂
R̂

IPS
n (πθ) + λ∥θ − θ0∥2

}︂
,

The optimization objective is amenable to stochastic optimization (decomposable into a sum),
scales to large datasets and returns policies with better empirical performance. However, this
principle, like CRM, suffers from other limitations, presented in the following:

(2) No Performance Guarantees. Both principles derived are motivated by the construc-
tion of bounds covering the true risk of policies. These bounds in their raw form cannot be
used directly as a learning objective. Indeed, the bound derived in Swaminathan and Joachims
(2015a) contains an intractable quantity and the one derived in London and Sandler (2019) is
vacuous. Introducing the hyperparameter λ helps us obtain practical objectives, that lose the
theoretical guarantees given by the initial bounds. These objectives do not necessarily cover
the true risk, and optimizing them can lead to policies worse than the logging π0. Empirical
evidence can be found in (Chen et al., 2019b) where the CRM principle fails to improve on π0.

(3) Hyper-parameter Selection. Another major problem of these principles is also caused
by the introduction of λ and it is selected. The free-parameter λ requires careful tuning, as its
choice drastically impacts the performance of the obtained policy. As there are no theoretical
guidelines to define a good value of λ, the strategy consists of cross-validating the parameter
over a relatively fine grid using the IPS estimator. Cross validation adds to the complexity of the
algorithm. This procedure also requires having a hold-out set that will not be used for training,
accentuating the variance problem. In addition, as the IPS estimator is still used to select the
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best value of λ, the policy returned in the end is the one that minimizes the IPS risk on the
validation set, which renders the whole principle incoherent.

The goal in this first part is to provide practitioners with better principles that circumvent such
limitations altogether, enjoying better statistical guarantees and empirical performance.

Chapter 3. Offline Learning with Distributionally Robust Optimization. In this
chapter, we present an alternative formulation to the CRM principle by resorting to the dis-
tributionally robust optimization (DRO) framework (Duchi et al., 2021). These tools enable
elegant construction of variance-sensitive confidence upper-bounds on the true risk by using
f -divergence based ambiguity sets. We apply this principle to the problem of offline policy eval-
uation and optimization. The resulting objective deals with limitations (1) and (3); it enjoys
the same statistical guarantees than CRM, can be automatically calibrated using asymptotic
coverage arguments and is amenable to stochastic optimization. We display strong numerical ex-
periments showing that the proposed approach effectively deals with the shortcomings of CRM.
This chapter is adapted from the following publication:

• Otmane Sakhi, Louis Faury, and Flavian Vasile (2020b). Improving Offline Contextual
Bandits with Distributional Robustness. Proceedings of the ACM RecSys Workshop on
Reinforcement Learning and Robust Estimators for Recommendation Systems, 2020.

Chapter 4. Offline Learning with PAC-Bayesian Theory. In this chapter, we question
the off-policy learning paradigm completely and advocate for a theoretically-grounded strategy
to confidently improve on the deployed policy π0. The proposed method revolves around creating
tight, empirical lower bounds on the improvement I(π) = R(π0) − R(π), and deploying new
policies only when we are confident of I(π) > 0. We base our approach on PAC-Bayesian
learning theory (Alquier, 2021) and demonstrate that its tools suit perfectly the problem of off-
policy learning. In particular, by interpreting policies as mixtures of decision rules, we derive a
tight, Bernstein-type PAC-Bayes bound that makes our strategy viable. The resulting strategy
deals with all three limitations; we show that the resulting algorithm can give improvement
certificates, is amenable to stochastic optimization and does not require any hyperparameter
tuning, making a big step towards achieving practical off-policy learning with true performance
guarantees. This chapter is based on the following publication:

• Otmane Sakhi, Pierre Alquier, and Nicolas Chopin (2023a). PAC-Bayesian Offline Con-
textual Bandits with Guarantees. Proceedings of the 40th International Conference on
Machine Learning, 2023.

Chapter 5. A Better PAC-Bayesian Analysis of Offline Learning. In this chapter,
we continue the development of the PAC-Bayesian analysis of the problem of offline policy
learning. By exploiting the negative nature of the risk, we derive new, tighter bounds that hold
for a larger class of risk estimators. The idea is based on a refined treatment of the moment
generating function of the risk and extend empirical Bernstein bounds to higher orders. The
particularity of these results is that they are fully empirical; we do not assume access to π0
contrary to previously derived bounds. We observe that our findings can give better guarantees
and allow us to derive new insight about the estimators used. This chapter is focused on
providing technical results and is based on new, unpublished work.
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Part II - Offline Learning of Large Scale Recommendation. The offline learning set-
ting provides practical solutions to efficiently align decision systems with complex reward sig-
nals. If the research community has focused on improving the existing estimators and learning
paradigms, little attention was directed towards adapting these approaches to the large action
space setting. This is of interest to learning search engines, recommender systems and practi-
cally any application where the number of interactions n and the size of the action space |A|
are massive. The main challenge in these applications is to design decision rules that satisfy
engineering constraints, while providing tractable algorithms that enable their alignment with
reward signals in a fast and reliable manner. Search engines must answer queries in a matter of
milliseconds, and real-world recommender systems (think of a video streaming platform) must
seamlessly fill the landing page with content the user may like. These delivery speed constraints
should be respected even if the catalogue (action space) contains billions of items. Another
aspect to take into consideration is that these systems are updated frequently, putting a consid-
erable constraint on the training time of such systems. Indeed, if we need to update our decision
system daily based on its interactions, the training time should be substantially smaller than a
day as you need to collect enough interactions and update the system in the same time frame.
In their naive implementations, both the decision-making and training of these systems scale
linearly in the size of the action space O(|A|), which cannot be allowed in massive action space
scenarios. In the following, we develop the discussion around these two important aspects and
present our contributions in this field.

Fast Decision Making. Answering a query or delivering accurate recommendations is per-
formed by the policy deployed. No matter the nature of the policy and its delivery, this step
generally boils down to the fast identification of a sub-sample of size K ≥ 1 of good actions
(Chen et al., 2019a) from the potentially massive action space. As a general rule, and for a user
x, the quality of the actions is encoded in the score function fθ(·, x) : A → R while the good
actions are identified by finding the best scoring actions, solving the following:

[a1, ..., aK ] =
K

arg sort
a′∈A

{︁
fθ(a′, x)

}︁
, (1.2)

with the operator arg sortKa′∈A returning the K highest scoring actions. This sorting operation
has a linear complexity on the size of the action space O(|A| logK) and cannot be adopted in a
large scale production environment. The common solution to reduce this complexity is to impose
a structure for the score function. By restricting the score function space to the following:

∀(x, a) fθ(a, x) = hΞ(x)⊺βa

with θ = [Ξ, β], the score function becomes an inner product between a context embedding
hΞ(x) and an action embedding βa, both residing in a latent space Rl of dimension l ≪ |A|.
With this structure, Equation (1.2) can be solved with approximate MIPS: Maximum Inner
Product Search algorithms (Shrivastava and Li, 2014) in a time complexity of O(log |A|) instead
of O(|A|), rendering fast decision-making possible without additional considerations.

Efficient training with the direct method. The direct method derives an optimal policy
that depends on identifying the best scoring actions according to the reward model rM. This
means that if rM has the proper parameterization, fast decision-making is possible. Training a
good model rM requires an excellent understanding of the underlying problem and is usually
achieved through maximum likelihood estimation (Aouali et al., 2023b) or ranking-based heuris-
tics (Rendle et al., 2009), which are methods that scale independently of the action space size.
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These training algorithms however can have other shortfalls if we are not careful about the par-
ticularities of this setting. In large action space scenarios, it is impossible for the deployed policy
to collect enough interactions for each action in A. The reward signal is unevenly distributed,
as the majority of data collected comes from actions that are highly likely under π0 and little
to no data is available for the rest of the actions. This means that if we use the maximum
likelihood principle, the quality of the learned model rM will depend on the context/action pair;
the estimate is precise for action/context pairs that are present enough in the data. This un-
balance in the estimate quality negatively impacts the policy derived, as acting based on the
MLE might suffer from post-decision disappointment (Smith and Winkler, 2006). One prin-
cipled way to mitigate this issue is to frame the whole problem within the lens of Bayesian
decision theory (West et al., 2021). For example, Jeunen and Goethals (2021) demonstrate that
even simple Bayesian modelling of the reward result in better behaved policies. With the help of
well-chosen priors, this formulation can also incorporate additional correlations we have between
contexts and actions, making learning even more efficient (Aouali et al., 2023c). However, the
main challenge of Bayesian modelling is computational; approximating posteriors over billions
of interactions, using complex models and priors is difficult and needs particular care (Chopin
and Papaspiliopoulos, 2020). We dedicate a chapter to develop this discussion, and construct a
Bayesian reward model for recommendation with strong, data-driven priors while giving proper
tools to accelerate its training in large scale applications.

Chapter 6. Scalable Bayesian Reward Modelling. In this chapter, we take the path of
the direct method and develop a bayesian model of the reward for the case of one-item recom-
mendation. We acknowledge the presence of two types of signals in recommendation problems;
the organic and bandit signals. While we condition our model on the the bandit feedback, the
organic interactions between the contexts and actions help us construct a novel prior that in-
corporates three similarities: the context-action similarity, the action-action similarity and the
context-context similarity. These similarities allow us to obtain good estimates of the reward
on all regions of the space, even for less explored actions and contexts. The proposed model
is flexible, efficiently uses the existing data but produces an intractable posterior. We provide
easy-to-implement computational tools to approximate its solution based on ideas from Vari-
ational Bayes (Blei et al., 2017). The resulting algorithm scales to large datasets, can learn
efficiently in different scenarios and benefits from the inner-product parametrization, allowing
fast decision-making. This chapter is based on the following publication:

• Otmane Sakhi, Stephen Bonner, David Rohde and Flavian Vasile (2020a). BLOB: A Prob-
abilistic Model for Recommendation that Combines Organic and Bandit Signals. KDD ’20:
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery
& Data Mining.

Fast training with importance-weighting methods. In our pursuit for scalable offline
policy learning algorithm, we also express interest for importance weighting based learning
paradigms. This approach learns a policy directly, and even simple operations involve com-
puting sums over the whole action space. In particular, we need to be extra-careful when
computing/approximating gradients of our objectives because this operation scales linearly in
|A| which can drastically slow down the optimization routine. The question of scaling general
off-policy learning objectives attracted little attention; Chen et al. (2019a) learned a production-
ready policy with an IPS-based objective without any focus on the computational aspect. We
are interested in this question and want to provide general acceleration methods. We study
the specific family of objectives that can be written as expectations under the policy evaluated.
This family include commonly adopted estimators (Horvitz and Thompson, 1952; Dudík et al.,
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2014; Wang et al., 2017; Saito and Joachims, 2022a; Saito et al., 2023; Aouali et al., 2023a),
and principled learning objectives (London and Sandler, 2019; Sakhi et al., 2023a). We first
study the acceleration of this specific family of learning objectives and provide logarithmic time
optimization procedures for single-item policies, focusing particularly on policies parameterised
with the softmax link function.

Chapter 7. Fast Offline Learning for One-Item Recommendation. In this chapter,
we focus on providing a principled way to accelerate the learning of inner-product softmax poli-
cies for a large panel of off-policy objectives. We identify the problems of commonly adopted
gradients and propose a solution based on three ingredients; a new covariance gradient formula,
exploiting the MIPS: Maximum Inner Product Search structure in the training phase and de-
signing proper Monte Carlo tools (Chopin and Papaspiliopoulos, 2020) to achieve accelerated
approximations. This results in a training algorithm with sub-linear (logarithmic or constant)
gradient updates. We conduct extensive experiments on large scale recommendation datasets
and demonstrate the impact of our approach; the proposed method is up to 25 times faster than
the baseline while producing trained policies of similar quality. This chapter is based on the
following publication:

• Otmane Sakhi, David Rohde, and Alexandre Gilotte (2023c). Fast Offline Policy Opti-
mization for Large Scale Recommendation. Proceedings of the 37th AAAI Conference on
Artificial Intelligence, AAAI 2023.

After attacking the problem of training large scale one-item decision systems with linear
objectives, we extend our analysis to the more challenging case of training slate decision systems.
Instead of playing one action, our policies need to deliver slates; an ordered list of items of
size K ≥ 1. This means that our decision rules and policies are constructed to act on the
combinatorial space SK of K-truncated permutation. The size of this space is O(|A|K) and
makes basic operations, from computing an average to searching for the best slate infeasible.
We focus on a family of decision systems that reduce the search space from the combinatorially
large set of slates SK to the original action space A. For a given context x, this reduction
consists of assigning a score fθ(a, x) to each action a and recommend a slate composed of the
top-K items with the highest scores. This leads to a O(log |A|) delivery time when we adopt the
inner-product structure for fθ(a, x). Aouali et al. (2023b) suggest a direct method approach to
learn large scale slate recommendation systems. In the next chapter, we present the challenges
of learning slate decision systems and propose solutions to accelerate their training.

Chapter 8. Fast Offline Learning for Slate Recommendation. In this chapter, we
focus on accelerating the learning of slate policies, a ubiquitous building block of modern online
systems. We begin by introducing the problem and analysing the existing algorithms, their
common assumptions and limitations. We then propose a new class of algorithms, based on
a novel relaxation that deals elegantly with the large scale constraints. The resulting method
works with arbitrary rewards, has better statistical properties while achieving sub-linear training
updates. We conduct large scale experiments and demonstrate that the proposed approach is
orders of magnitude faster than the baselines while resulting in better performing policies. This
chapter is based on the following publication:

• Otmane Sakhi, David Rohde, and Nicolas Chopin (2023b). Fast Slate Policy Optimization:
Going Beyond Plackett-Luce. Transactions on Machine Learning Research.
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Chapter 2

Literature Review

2.1 The Landscape of Contextual Bandit

2.1.1 The Online Setting

A (stochastic)1 contextual bandit is a powerful sequential decision-making framework where an
agent interacts with an unknown environment for T ∈ N∗ rounds. This environment provides
contexts (user information, web page, etc) and a set of available actions A that our agent can
make. In each round, the agent observes a context x ∈ X , acts by taking an action a and receives
a feedback; a reward r ∈ R+ that depends on both the action and the context observed, coming
from a fixed, but unknown distribution. The particularity of this setting compared to classical
supervised learning is that we observe partial feedback; we get access to the reward associated
with the context and the action made by the agent and nothing more. Formally, for each round
t ∈ [T ]:

• The environment reveals a context xt ∈ X coming from an unknown distribution ν.

• The agent acts on the context xt by making action at. The agent is represented by a
stochastic policy πt : X → P(A), that given the context xt, defines a probability distribu-
tion πt(·|xt) ∈ P(A) over the space of available actions A. Acting boils down to sampling
from the policy given the context xt; at ∼ πt(·|xt).

• Making action at for the context xt reveals a reward rt ∈ R+ coming from an unknown
distribution rt ∼ p(·|at, xt).

• The feedback received rt updates the policy πt.

Every interaction helps the agent learn about the environment and improves it online to
better act in the future. The contextual bandit framework is flexible and can model various
problems. However, it is noteworthy to point out that it relies on the fundamental assumption
that the problem is stateless: actions made by the agent do not affect the environment; for
each round t, both contexts and rewards are drawn i.i.d. as the action at does not influence
ν. This makes contextual bandit not suitable for problems that require long-term planning, for
which we can use the more general framework of Reinforcement Learning. We direct the reader
to Sutton and Barto (2018) for a great introduction to the field. With these assumptions in
mind, we want our agent to achieve a goal that the practitioner is interested in. Depending on
the application, we are interested in either maximising the expected cumulative reward after

1Different from the adversarial setting.
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Figure 2.1: A Simple Illustration of the contextual bandit framework. One interaction consists
of the environment revealing a context, the agent acting on the context and receiving a reward.

T rounds (when playing actions is costly, think about running Ad campaigns, when one does
not own the display space and needs to pay for it) or identify the best arms given a confidence
tolerance or a fixed interactions budget (when playing actions has little to no cost, think about
a casino owner wanting to identify slot machines with high payouts to get rid of them).

Regret Minimisation. The regret of the agent (Auer et al., 2002) is defined as the gap
between the highest expected cumulative reward (achieved by an optimal policy) and the cu-
mulative reward the agent actually obtains after T round. Maximising the cumulative reward
is equivalent to minimising the regret, the latter quantity however is better suited to theoreti-
cally compare the strategies to the best attainable outcome. Figure 2.2 illustrates the regret of a
bandit strategy. Algorithms achieving optimal regret need to carefully balance between two con-
flicting objectives: increase their knowledge by playing new actions (exploration) and leverage
the information acquired so far to enhance their performance (exploitation), giving rise to the
well known explore-exploit dilemma (Lattimore and Szepesvári, 2020). Optimal strategies for
regret minimisation are based on the optimism in the face of uncertainty principle, with the most
notable strategies being UCB: Upper Confidence Bounds (Chu et al., 2011) and TS: Thomson
Sampling (Agrawal and Goyal, 2013). In each round, these strategies construct (or update) a
confidence interval around the true reward2 and play the action with the highest "potential"
outcome. We illustrate in Figure 2.3 a simplified view of the idea behind these algorithms.

Pure Exploration. Pure Exploration is a paradigm used within the contextual bandit frame-
work to identify the best policy under practical constraints. This is suitable for applications
where we do not necessarily need to exploit or gather reward to counterbalance the cost of
playing actions. The constraints can be split into two types:

• Fixed Confidence: Given a tolerance δ, we want to identify the optimal policy with
confidence at least 1− δ while reducing the number of interactions T as much as possible.
Some algorithms used for this type of problem are variants of confidence interval strate-
gies (Kalyanakrishnan et al., 2012; Degenne et al., 2019) and Track-and-Stop strategies
(Garivier and Kaufmann, 2016).

2Thomson Sampling can also be cast within this framework (Abeille and Lazaric, 2017).
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Figure 2.2: A Simple example of the regret of a strategy after T rounds: the difference (red line)
between the cumulative reward of the optimal policy (blue curve) and the cumulative reward of
our bandit strategy (the green curve). One can observe that starting a certain time, our strategy
begins to play optimal actions (both the blue and green line start having the same slope).

Figure 2.3: An Illustration of the principle of "optimism in face of uncertainty" with an example
of a contextual bandit problem with |A| = 3. At round t, we construct a confidence interval
around the reward of each arm, and choose the arm with the highest potential payout. In this
case, even if a2 has the highest empirical mean, we choose the arm a1 as it can have the best
reward in the most "optimistic" case.
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• Fixed Interactions budget: Given a number of interactions T , we want to maximise
the probability of returning the optimal policy. One of the algorithms that deal with this
type of constraint is the sequential halving algorithm developped in Karnin et al. (2013).

If it is by no mean our ambition to cover the rich literature of the bandit framework in this
introduction, the reader can already imagine the endless applications and practical impact this
modelling approach might have. All the strategies devised for these different applications benefit
from strong theoretical guarantees (achieving low regret, finding optimal policies) while letting
the agent learn by its own; besides setting parameters for the strategy, both acting and learning
is done online, automatically by the agent. As attractive this online learning setting can be,
there are some practical considerations that limit its viability, and motivate us to think about
the problem differently:

• Robust Infrastructure: Deploying a bandit algorithm online, especially for large scale
applications, requires a scalable and robust infrastructure, that is capable of handling hard
engineering constraints (asynchronous and automatic updates, monitoring capabilities,
etc) requiring a full rethinking of the model deployment pipeline. This can represent a big
engineering cost that few companies are willing to pay.

• Slower experimentation: The same decision-making problem can be attacked by dif-
ferent bandit strategies, built on different assumptions, while having different hyperpa-
rameters to tune. Testing one strategy online requires the deployment of an agent that
will learn by interacting with some traffic for enough rounds before convergence. If we
can collect n interactions per day, and let us suppose that our bandit strategy need 7n
interactions to converge, then we can only test out a bandit strategy per week (7 days)
which renders experimentation really slow and costly.

• Might be too costly: Evaluating a bandit strategy offline before deployment is hard to
do, making practitioners deploy agents "blindly’. This can result in unreasonable losses
especially in the case of high risk applications. In addition, even if we choose the best
suited bandit strategy to our problem, the level of exploration recommended by theory
is often costly in the short-mid term. While a good level of exploration is beneficial for
the long-term, it can result in immediate loss of revenue that might be detrimental to the
business operated as it needs to comply with short-term revenue constraints.

With all these limitations taken into consideration, we want to adapt this framework to
better answer the needs of industrial applications. In practice, we usually want to have full
control of the amount of exploration done by the systems and prefer being able to manipulate it
easily. In addition, businesses rarely face ’cold-start’ problems; for the majority of the problems
faced, one can leverage expert knowledge combined with non-bandit signal (information about
contexts and actions) to design reasonable strategies even before the first interactions with
the environment. The main challenge then shifts to the improvement of such strategies with
data-driven approaches. It is highly desirable to being able to train the next strategy offline
(as it reduces drastically the infrastructure prerequisites and accelerates experimentation) while
having guarantees on its performance; before deploying the brand-new recommendation engine,
one would like to make sure that it will generate at least as much revenue as its predecessor.
This requires the development of a counterfactual reasoning, and the construction of specific
estimators that allow us to answer the question: “What revenue would I have generated if I
had acted differently?”. In the hope of answering this question, the offline formulation of the
contextual bandit framework was developed with the idea of leveraging logged interactions of
an already deployed strategy, to confidently evaluate (What is the revenue generated of a given
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Figure 2.4: The difference between (Online) Contextual bandit and its offline formulation. The
online approach (on the left) updates the model every time we observe a reward on an action.
The objective is to minimize the regret in the long run. The offline setting (on the right) updates
the model once based on the logged interactions of the policy π0 with the environment. This
update is done offline and the new strategy, if better, will be deployed in the future.

policy?) and learn (Find the policy that will maximize revenue) newly constructed strategies
offline.

2.1.2 The Offline Setting

The offline contextual bandit setting is particularly interesting for industrial applications. It
provides more control to practitioners, as they can evaluate and learn new policies, and fully
decide on whether to deploy them online or not. In this formulation, the agent gathers data and
is not updated after each interaction. Instead, this data is logged and is used by practitioners
to design better performing agents for the next deployment. The current agent is represented
by the policy π0 which, in each round t ∈ [n], acts on the context xt by performing the action
at and receives the feedback rt. Figure 2.4 represents the difference between this formulation
and the classical contextual bandit. All the n interactions are logged in the so-called bandit
feedback dataset:

Dn = {xi ∼ ν, ai ∼ π0(·|xi), ri ∼ p(·|xi, ai), π0(ai|xi)}i∈[n].

The goal in this formulation is often performance driven, as we want to find policies that
minimize the risk; defined as the expected negative reward under the actions of the policy. For
a given policy π, the risk is expressed as:

R(π) = −Ex∼ν,a∼π(·|x)
[︂
Er∼p(·|x,a)[r]

]︂
= −Ex∼ν,a∼π(·|x) [r̄(a, x)]
= Ex∼ν,a∼π(·|x) [c(a, x)] .

with the cost c(a, x) defined as −r̄(a, x). These notations produce the same definition and will be
used exchangeably in the rest of the manuscript. As we cannot have access to the true expected
risk, we proceed by building an estimator of this quantity to first evaluate the risk of any policy
offline and learn reward maximizing policies in a second time.

Policy Evaluation. We want to be able to evaluate the performance of any given policy π
and be able to compare it to the performance of the policy acting in production. The most
reliable way to achieve this is to actually deploy the policy π and gather interactions under
it to estimate its expected risk. Modern online decision systems rely on A/B tests (Kohavi
et al., 2012), considered the "gold-standard" of evaluation practices. When conducted properly
(Gupta et al., 2019), an A/B test can accurately estimate the effect of replacing the current
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policy “A” with the new candidate “B”. The common protocol begins by choosing a promising
policy with the help of extensive offline experiments. The new policy is then deployed, alongside
the current system and the A/B test is conducted to decide, whether the chosen candidate
“B” improves and should replace the current system “A”. In large scale production systems,
A/B tests require substantial engineering effort, constant monitoring and need several days to
be properly analysed. Ideally, the offline selection process should produce excellent candidates
that align with the online metrics, to avoid unnecessary A/B tests. Aligning offline and online
performance is the goal of the research literature on policy evaluation. The challenge that arises
from this approach is that we can only use data collected under the policy π0 to evaluate, any,
possibly different policy π. A common idea is to correct the bias of the estimation of the risk of
new policies π with importance weighting (Chopin and Papaspiliopoulos, 2020), as we have:

R(π) = −Ex∼ν,a∼π(·|x) [r̄(a, x)]

= −Ex∼ν,a∼π0(·|x)

[︃
π(a|x)
π0(a|x) r̄(a, x)

]︃
,

The expectation becomes computed under π0 and thus can be approximated by the collected
interactions, giving the well known IPS: Inverse Propensity Scoring estimator (Horvitz and
Thompson, 1952) as a result:

R̂
IPS
n (π) = − 1

n

n∑︂
i=1

π(ai|xi)
π0(ai|xi)

ri.

This estimator of the risk of π is unbiased when the support3 of π is included in the support
of π0. This is a desirable property as it means that the estimator is easy to analyse, consistent
and will converge to the true risk with enough samples. However, as this estimator relies on
importance weighting, its variance depends on the disparity between the policy that we want to
evaluate and the policy that gathered the data (Bottou et al., 2013), its use can be problematic
when the new policy π differs drastically from π0. In these cases, one would prefer an estimator
that do not suffer from large variance problems. A common way to achieve this is to learn a
model rM : X × A → R+ of the reward mean r̄. Once we have a model rM, we can build a
simple estimator of the risk of any policy from the following observation:

R(π) = −Ex∼ν,a∼π(·|x) [r̄(a, x)]
≈ −Ex∼ν,a∼π(·|x) [rM(a, x)] .

This produces the DM: Direct Method estimator that writes:

R̂
DM
n (π) = − 1

n

n∑︂
i=1

∑︂
a∈A

π(a|xi)rM(a, xi).

The DM estimator does not suffer from variance problems coming from the mismatch of both
policies as it does not rely on importance weighting. It can evaluate any policy π, even if
π and π0 do not share the same support. The efficiency of this estimator however depends
entirely on our ability to model the problem. If this estimator enjoys a well-behaved variance,
its limitation comes from a potentially substantial bias, as it is generally hard to model the
reward perfectly. As both estimators have complementary properties, we can mitigate their
limitations by combining them. The DR: Doubly Robust estimator (Dudík et al., 2014) does

3supp(π) = {(x, a) ∈ X × A, π(a|x) > 0}
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that and results in an improved estimator. The idea behind the construction of this estimator
stems from the following identity:

R(π) = −Ex∼ν,a∼π(·|x) [r̄(a, x)]
= −Ex∼ν,a∼π(·|x) [r̄(a, x)− rM(a, x)]− Ex∼ν,a∼π(·|x) [rM(a, x)]

= −Ex∼ν,a∼π0(·|x)

[︃
π(a|x)
π0(a|x) (r̄(a, x)− rM(a, x))

]︃
− Ex∼ν,a∼π(·|x) [rM(a, x)] .

Which combines both the importance weighting technique and the use of a reward model rM,
resulting in the DR estimator:

R̂
DR
n (π) = − 1

n

n∑︂
i=1

π(ai|xi)
π0(ai|xi)

(ri − rM(ai, xi))−
1
n

n∑︂
i=1

∑︂
a∈A

π(a|xi)rM(a, xi).

The estimator obtained is unbiased under the same common support condition and enjoys a
better variance (Nguyen-Tang et al., 2022). Research in the area of offline (also called off-
policy) evaluation focuses on deriving estimators with an improved bias-variance trade-off, either
by using different importance weighting techniques (Ionides, 2008; Swaminathan and Joachims,
2015b; Wang et al., 2017; Metelli et al., 2021) or by assuming a certain structure on the reward
(Swaminathan et al., 2017; Saito and Joachims, 2022a; Saito et al., 2023). Building these
estimators help us evaluate the performance of any policy π, thus they can be used as a training
objective to find the best policy π offline.

Policy Learning. The ingredients to learn a policy are to choose an objective function; often a
regularized off-policy estimator (Swaminathan and Joachims, 2015a; Ahmed et al., 2019; London
and Sandler, 2019), and a policy class on which to optimize it. These choices dictate the
approach that will be adopted and often result in different policy learning algorithms. Let
Π = {π : X → P(A)} be the space of policies, and let us begin by introducing one of the
simplest approaches. If we are confident about our ability to model the problem, and have built
a reward model rM, we can proceed and learn a policy using the Direct Method. The idea stems
from the following:

arg min
π∈Π

R(π) = arg min
π∈Π

−Ex∼ν,a∼π(·|x) [r̄(a, x)]

≈ arg min
π∈Π

−Ex∼ν,a∼π(·|x) [rM(a, x)] .

By replacing the unknown mean reward r̄ by our model rM, we can solve the unconstrained
policy optimization problem and obtain the DM solution:

∀(x, a) πDM(a|x) = 1

[︄
arg max
a′∈A

rM(a′, x) = a

]︄
.

For each context x, the DM policy chooses the action a that has the biggest reward according
to our model rM. This approach is called the Direct Method because we can directly derive
the optimal policy from the reward model. Sometimes, we want to enforce some constraint on
the policy deployed. For example, some applications require policies that diversify the actions
played for the same context, others need some exploration to better identify the best actions.
This constraint is often encoded by adding a regularization to the learning objective. To achieve
better diversification, we add an entropy regularization (Ahmed et al., 2019) and modify our
optimization problem to solve the following:

arg min
π∈Π

{︂
R(π) + γEx∼ν,a∼π(·|x) [log π(a|x)]

}︂
≈ arg min

π∈Π

{︂
Ex∼ν,a∼π(·|x) [−rM(a, x) + γ log π(a|x)]

}︂



Chapter 2. Literature Review 41

with γ a positive parameter that controls the diversity level of the policy. The solution of this
optimization problem can be obtained analytically and is expressed as:

∀(x, a) πγDM(a|x) = softmaxA (rM(a, x)/γ)

= exp(rM(x, a)/γ)∑︁
a′∈A exp(rM(x, a′)/γ) .

This policy has a positive probability mass on all actions, interpolating between a uniform
distribution (γ → +∞) and πDM (γ → 0). The policies derived with the direct method depend
on the reward model, directing all our efforts towards building a rM that reflects the properties of
the true rewards and from which the policy derived fits our engineering constraints. Sometimes,
our reward model rM produces an optimal policy πDM that cannot be deployed due to application-
dependent constraints (in low latency applications, finding the action with maximum reward
for a particular context x can take more time than allowed). In these cases, we restrict our
optimization problem to a space of policies that fits the requirements of our problem. Building
a space of policies is usually done through the definition of:

• A parametric space of score functions F(Θ) = {fθ : X × A → R, θ ∈ Θ ⊂ Rd} with d the
dimension of the parameters. Given a θ ∈ Θ and for a particular context x and action a,
the value of fθ(x, a) reflects the relevance of action a to the context x.

• A link function L that takes a score function fθ and transforms it in order to define a
policy πθ. If we want to write:

∀(x, a), πθ(a|x) = L(fθ(a, x)).

L needs to be a positive, real valued function L : R → R+ that verifies the following
condition:

∀(θ, x),
∑︂
a′∈A

L(fθ(a′, x)) = 1.

The space of functions verifying these conditions will be denoted by L. Different link
functions produce policies with different properties (Mei et al., 2020a,b; Sakhi et al., 2023a).
We already saw from the DM example that the link function defining our policy can be an
indicator or a softmax function depending on the objective we aim for. In general, we
want smooth link functions that facilitate optimization making the softmax function (Mei
et al., 2020b) a commonly adopted option.

The choice of the couple (F(Θ), L ∈ L) is enough to define a parametric policy space Π(Θ)
on which the optimization of our objective function can be done. Getting back to the Direct
Method approach, we shift our focus to solving the following constrained optimization problem:

arg min
πθ∈Π(Θ)

R(πθ) = arg min
πθ∈Π(Θ)

−Ex∼ν,a∼πθ(·|x) [r̄(a, x)]

≈ arg min
πθ∈Π(Θ)

−Ex∼ν,a∼πθ(·|x) [rM(a, x)] .

As we do not know if πDM ∈ Π(Θ), we proceed by computationally solving the empirical coun-
terpart of the objective:

arg min
πθ∈Π(Θ)

{︄
− 1
n

n∑︂
i=1

∑︂
a∈A

πθ(a|xi)rM(a, xi)
}︄

= arg min
πθ∈Π(Θ)

{︂
R̂

DM
n (πθ)

}︂
.
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Which can be interpreted as distilling the potentially complicated reward model rM into a policy
that fits our constraints. In this example, our learning objective was the DM estimator. As a
general rule, off-policy learning objectives rely on optimizing a regularized risk estimator on a
parametric policy class:

arg min
πθ∈Π(Θ)

{︂
R̂n(πθ) + λC(πθ)

}︂
, (2.1)

with R̂n a risk estimator, λ a tunable parameter and C(πθ) a regularization term that is either
motivated by additional constraints we want to enforce (Ahmed et al., 2019; Schulman et al.,
2015) or statistical learning theory arguments making the learning of these policies more prin-
cipled (Swaminathan and Joachims, 2015a; Ma et al., 2019; London and Sandler, 2019). In the
next section, we will develop the policy learning discussion more, with a particular focus on
statistical learning tools that enable us to learn systems with performance certificates.

2.2 Performance Guarantees with Statistical Learning

Statistical learning theory (Vapnik, 1998) studies the problem of inference; that is, of gaining
knowledge and making predictions based on a set of data. In particular, we are interested in the
PAC: Probably Approximately Correct framework (Valiant, 1984), a branch of learning theory
that investigates the problem of generalisation, answering the question of how well a predictor
(or a family of predictors) can perform on unseen data. Developments of this branch improved
our understanding of common learning paradigms, with contributions in supervised learning
(Vapnik, 1991; Cortes and Vapnik, 1995; McAllester, 1998; Catoni, 2007; Germain et al., 2009),
unsupervised learning (Bengio et al., 2013; Saunshi et al., 2019; Nozawa et al., 2020) and online
learning (Even-Dar et al., 2002; Seldin et al., 2011; Haddouche and Guedj, 2022; Tirinzoni et al.,
2023; Al-Marjani et al., 2023). Historically, supervised learning had attracted most attention
and is best understood from this perspective. It is only natural to choose this learning paradigm
to present some of the tools used by the PAC framework. In this setting, we are given a data
set, and a loss to measure performance. We fix a set of predictors and look for a good predictor
in this set, w.r.t to the loss defined. Formally, we have:

• A dataset Sn = {Xi ∈ X , Yi ∈ Y}i∈[n] composed of n i.i.d. observations coming from an
unknown joint distribution p(X ,Y). X is the object set (text, image) and Y the label set
(sentiment of the text, class of the image).

• A loss function l : Y × Y → [0, 1] measuring the quality of the predictions, with the
convention that l(y, y) = 0.

• We look for good predictors in HΘ = {hθ : X → Y, θ ∈ Θ} a class of predictors, parame-
terized by θ coming from the parameter set Θ.

• We are interested in finding a predictor h from HΘ that will minimize the expected loss
l(h) = E(X,Y )∼ν [l(h(X), Y )]. We denote by ln(h) the empirical loss estimate.

As it is usually impossible to have access to the true, expected loss, the PAC toolbox provide
us with bounds that control this quantity for any predictor hθ ∈ HΘ. PAC bounds give us the
following result, holding with high probability over the data:

∀θ ∈ Θ : l(hθ) ≤ ln(hθ) +O (Cn(HΘ)) ,
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with Cn(HΘ) a measure of complexity (Vapnik, 1998; Zhou, 2002; Bartlett and Mendelson,
2003) of the class of predictors used. In our applications, we want to obtain a performance
guarantee on our predictors with the help of these bounds. For a predictor hθ̂, we want to
control its true expected loss with high probability. We aim at obtaining a performance guar-
antee/certificate, which is a result of the form:

l(hθ̂) ≤ 0.12. (2.2)

This result guarantees us (with high probability) that our predictor, will suffer a loss of at
most 0.12. To obtain the smallest guarantees, we seek bounds that are tight and advocate for
minimizing the right-hand side over all θ ∈ Θ in order to control and minimize expected loss.
For example, Maurer and Pontil (2009) derived an empirical Bernstein-type bound, and used
the notion of covering number (Zhou, 2002) to control the loss of a class of predictors. For a
tolerance δ ∈]0, 1], Their main result is a bound holding with probability 1− δ:

∀θ ∈ Θ : l(hθ) ≤ ln(hθ) +

√︄
18vn(hθ) ln (Mn(HΘ)/δ)

n
+ 15 ln (Mn(HΘ)/δ)

n− 1 , (2.3)

with vn(hθ) the empirical variance of the loss estimate and Mn(HΘ) a complexity measure
defined in (Maurer and Pontil, 2009, Theorem 6). This complexity is intractable even for simple
predictor classes, which means that its presence makes the bound unusable as-is for learning
purposes. Mn(HΘ) can be upper bounded by empirical quantities (Zhang, 2002) but this often
results in loose and overly conservative bounds. In particular, this complexity is known to be
very large for rich predictor classes (i.e. neural networks), making the bound vacuous. To
circumvent this limitation, the usual approach is to identify useful quantities from the bound
and propose a learning principle, replacing intractable quantities with tunable hyperparametes.
This approach motivated numerous learning principles, such as Empirical Risk Minimization
(Vapnik, 1991) and Structural Risk Minimization (Cortes and Vapnik, 1995). In this example,
the SVP principle was derived from Equation (2.3) proposing to solve the following optimization
problem:

arg min
θ∈Θ

⎧⎨⎩ln(hθ) + λ

√︄
vn(hθ)
n

⎫⎬⎭ ,
with λ a hyperparameter selected with cross-validation. Using these learning principles provide
practitioners with tractable optimization objectives, but does not result in performance certifi-
cate like in Equation (2.2). Swaminathan and Joachims (2015a) adapted these results to the
offline contextual bandit framework. See (Swaminathan and Joachims, 2015a, Table 1) for the
differences between the supervised learning problem and the offline contextual bandit problem.
Particularly, they based their analysis on cIPS: clipped IPS (Bottou et al., 2013) in order to
respect the bounded assumption of the loss. This risk estimate was used to derive a bound
similar to Equation (2.3) holding for policies πθ in a policy class Π(Θ). The obtained bound
(Swaminathan and Joachims, 2015a, Theorem 1) is intractable, and motivated the use of a sim-
ilar learning principle.

The Distributionally Robust Optimization framework (Duchi et al., 2021) provides an intuitive
approach to control the loss of our predictors. After observing the samples Sn, it treats the
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induced empirical distribution with scepticism and seeks a solution that minimizes the worst-case
expected cost over a family of distributions, described in terms of an uncertainty ball (around
the observed, empirical distribution). These tools were proven to be powerful for decision theory
(Duchi and Namkoong, 2019) and in training robust classifiers (Madry et al., 2018). Let Uϵ(p̂n)
be the uncertainty ball of radius ϵ, around the empirical distribution p̂n, and let hθ be a predictor
from HΘ. Instead of studying the empirical loss ln(hθ), the DRO formulation focuses on the
following, worst-case empirical estimator (Duchi et al., 2021):

ln(hθ,Uϵ(p̂n)) = max
q∈Uϵ(p̂n)

E(x,y)∼q [l(hθ(x), y)] .

This framework is also called generalized, empirical likelihood as a well-chosen uncertainty ball
recovers the empirical likelihood approach of Owen (2001). For a particular choice of the un-
certainty set Uχ2

ϵ (p̂n) (using the χ2 divergence to quantify the distance from the empirical dis-
tribution), Duchi and Namkoong (2019) prove that the DRO, worst-case empirical estimator is
equivalent to a variance-regularized empirical loss:

ln(hθ,Uχ
2

ϵ (p̂n)) = ln(hθ) +
√︂
ϵvn(hθ).

This result means that minimizing the worst-case empirical loss is equivalent to solving the
SVP principle. These tools were adapted to the problem of off-policy learning (Faury et al.,
2020; Dai et al., 2020) and we develop them further in Chapter 3. Their use is motivated by
asymptotic-coverage arguments (in the limit, the worst-case risk will cover the true risk) and
their finite-sample analysis is loose, failing to produce satisfying performance guarantees (a re-
sult similar to Equation (2.2)) in practical scenarios (Dai et al., 2020).

If our objective is to know how a policy will perform before it interacts with the environment,
deriving a learning principle is not enough. We are interested in obtaining performance guar-
antees; results similar to Equation (2.2), where we control with high confidence the risk of a
trained policy πθ̂:

R(πθ̂) ≤ −0.81. (The risk is in [−1, 0]) (2.4)

This result certifies that, in the worst case, our policy πθ̂ will have a risk of −0.81. This
performance guarantee give practitioners a way to identify promising policies that are worth A/B
testing. For this same example, if the logging policy π0 have a risk of −0.71, then Equation (2.4)
alone guarantee us that the new learned policy improves on π0. These results are desired in
the offline policy learning context and can have a substantial impact on real world problems.
Obtaining these results rely on the derivation of tight and tractable PAC bounds. Recently,
PAC-Bayes bounds (McAllester, 1998; Catoni, 2007), a family of PAC bounds, promise the
delivery of performance guarantees for difficult problems (Dziugaite and Roy, 2017) and present
themselves as good candidates to answer this question. If the notion of complexity in PAC
bounds limited their application to simple predictor classes, PAC-Bayes techniques can deal
elegantly with any predictor class HΘ and are proven to provide performance guarantees even
for well-known, over-parameterized neural networks (Dziugaite and Roy, 2017). However, an
artefact of these bounds is that we need to change the quantities of interest. PAC bounds study
the performance of a predictor hθ inHΘ by controlling its loss l(hθ). PAC-Bayes bounds however
study randomized predictors; obtained by sampling in a set of basic predictors, according to some
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prescribed probability distribution. Formally, let P(Θ) be the set of all probability distributions
on Θ (equipped with its σ-algebra). let Q ∈ P(Θ) a probability distribution over Θ (and thus
HΘ), PAC-Bayes bounds control the loss of randomized predictors, computed as :

Eθ∼Q [l(hθ)] .

In a supervised learning setting, this quantity can be interpreted as adopting the following
procedure: for each sample (X,Y ) ∼ ν(X ,Y), we sample a predictor hθ from Q, predict the
label Y p = hθ(X) and then compute the loss l(Y p, Y ). This is different from studying aggregated
predictors (Breiman, 2001) where for each sample, we aggregate (by either voting or averaging)
all predictor’s results to predict the label. We present the differences introduced with the PAC-
Bayesian approach for supervised learning. We have:

• A dataset Sn = {Xi ∈ X , Yi ∈ Y}i∈[n] composed of n i.i.d. observations coming from an
unknown joint distribution p(X ,Y). X is the object set (text, image) and Y the label set
(sentiment of the text, class of the image).

• A loss function l : Y × Y → [0, 1] measuring the quality of the predictions, with the
convention that l(y, y) = 0.

• We define HΘ = {hθ : X → Y, θ ∈ Θ} a class of predictors, parameterized by θ coming
from the parameter set Θ.

• (PAC-Bayes) We define a a set of probability distribution M(Θ) ⊆ P(Θ) over Θ.

• (PAC-Bayes) We are interested in finding a good distribution Q ∈ M(Θ) that will
minimize the expected loss of the randomized predictor Eθ∼Q [l(hθ)].

This is achieved through the derivation of bounds holding for all distributions Q ∈ M(Θ). Let
P ∈ P(Θ) a reference distribution that does not depend on the data Sn. The general form of
PAC-Bayesian bounds is an inequality holding with high probability:

∀Q ∈M(Θ) : Eθ∼Q [l(hθ)] ≤ Eθ∼Q [ln(hθ)] +O (KL (Q||P )) ,

with KL the KL-divergence defined by:

KL(Q||P ) =

⎧⎨⎩
∫︁

ln
{︂
dQ
dP

}︂
dQ if Q is P -continuous,

+∞ otherwise.

For example, we give below a simple PAC-Bayes bound (Catoni, 2007) to showcase the versatility
of this framework. Let P ∈ P(Θ) a reference distribution, δ ∈]0, 1] a tolerance and λ > 0, we
have with probability at least 1− δ:

∀Q ∈ P(Θ) : Eθ∼Q [l(hθ)] ≤ Eθ∼Q [ln(hθ)] + KL (Q||P ) + log 1/δ
λ

+ λ

8n (2.5)

Minimizing the r.h.s gives the smallest guarantees on aggregated predictors. We get to solve
the following optimization problem:

arg min
Q∈P(Θ)

Eθ∼Q [ln(hθ)] + KL (Q||P )
λ

,
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which happens to be analytically tractable and we obtain the Gibbs distribution (Guedj, 2019)
as a solution:

∀θ ∈ Θ, dQ̂(θ) ∝ exp (−λln(hθ))× dP (θ).

The bound also gives us an idea on the worst case performance of the randomized predictor
according to Q̂:

Eθ∼Q̂ [l(hθ)] ≤ log (Eθ∼P [exp (−λln(hθ))]) + log 1/δ
λ

+ λ

8n. (2.6)

Sampling from the distribution Q̂ is mandatory if we want to use the randomized predictor,
and computing L(P ) = log (Eθ∼P [exp (−λln(hθ))]) is desired to have an idea on its performance.
Both sampling from Q̂ and approximating L(P ) can be done with (Markov Chain/Sequential)
Monte Carlo (Chopin and Papaspiliopoulos, 2020). If these methods fail to scale to our problem,
a usual solution is to restrict the probability set M(Θ) to simple distributions. If Θ = Rd, a
common choice is to set M(Θ) =

{︂
µ ∈ Rd,N (µ, Id)

}︂
to unit-variance, isotropic Gaussians. By

fixing the reference distirbution to P = N (µ0, Id), the previous bound becomes:

∀µ ∈ Rd : Eθ∼N (µ,Id) [l(hθ)] ≤ Eθ∼N (µ,Id) [ln(hθ)] + ||µ− µ0||2 + 2 log 1/δ
2λ + λ

8n. (2.7)

Obtaining a good randomized predictor boils down to computationally solving the optimiza-
tion problem:

arg min
µ∈Rd

Eθ∼N (µ,Id) [ln(hθ)] + ||µ− µ0||2

2λ .

This optimization problem looks like Variational Bayes objectives (Blei et al., 2017) for which a
multitude of solutions were proposed to solve it efficiently (Xu et al., 2019). Once we have our
solution, obtaining the worst case loss for the randomized predictor can be done by evaluating
the bound. We can observe that, contrary to classical PAC bounds, PAC-Bayesian bounds
are tractable and benefit from various computational tools to find their minimizers. They are
also tight enough to be valuable in learning both simple (Germain et al., 2009) and complex
predictors (Dziugaite and Roy, 2017) with guarantees. To increase the impact of these bounds,
research in this area is focused on deriving new, tighter bounds (Mhammedi et al., 2019; Jang
et al., 2023), loosening assumptions (Alquier and Guedj, 2018; Kuzborskij and Szepesvári, 2020;
Haddouche and Guedj, 2023) and adapting them to various learning problems (Seldin et al., 2011;
London and Sandler, 2019; Haddouche and Guedj, 2022). To make them even more viable, new
disintegration techniques (Viallard et al., 2023) were also developed to allow these bounds to
give strong performance guarantees on single predictors drawn from the learned distribution. If
working with randomized predictors can be seen as a "bug" in most settings, it is considered a
"feature" in policy optimization as both policies and randomized predictors are closely related.

• The procedure of a randomized predictor is the following: for each sample (X,Y ) ∼
ν(X ,Y), we sample a predictor hθ from Q, predict the label Y p = hθ(X) and then suffer
the loss l(Y p, Y ).

• The procedure of a policy is the following: for each context x ∼ ν(X ), we sample an action
a from π(·|x), and receive the reward r ∼ p(·|x, a).



Chapter 2. Literature Review 47

The procedures are similar and both objects can be related if we work with class of predictors
that map contexts x to actions in A. Indeed, instead of sampling directly from a distribution
on the action set, we sample from a distribution on a predictor space, HΘ ⊆ {h : X → A}. As
such, for a distribution, Q over HΘ, the probability of an action, a ∈ A, given a context, x ∈ X ,
is the probability that a random predictor, hθ ∼ Q, maps x to a; that is:

πQ(a|x) = Eh∼Q [1[h(x) = a]] .

This result shows that a policy is a randomized predictor in disguise. This perspective was
developed in Seldin et al. (2012), adopted by London and Sandler (2019) and later formalized
in Sakhi et al. (2023a). This result is key to the analysis of London and Sandler (2019), that
adapted McAllester (2003)’s bound to the offline contextual bandit setting. To achieve this,
they clipped the propensity score and used the following risk estimator:

R̂
τ
n(π) = − 1

n

n∑︂
i=1

π(ai|xi)
max{π0(ai|xi), τ}

ri,

with τ ∈]0, 1]. Their analysis resulted in the bound below. Given a reference distribution P and
a tolerance parameter δ ∈]0, 1], the following holds with probability at least 1 − δ, uniformly
over all distributions Q ∈ P(Θ):

R(πQ) ≤ R̂
τ
n(πQ) +

2(KL(Q||P ) + ln 2
√
n
δ )

τn
+

√︄
2[R̂τn(πQ) + 1

τ ](KL(Q||P ) + ln 2
√
n
δ )

τn
.

One can see that for offline contextual bandits, PAC-Bayes bounds control the quantity of
interest, which is the risk of the policy directly. Working with randomized predictors for this
problem matches perfectly our needs. Another connection between the PAC-Bayes framework
and offline contextual bandits is that the reference distribution can be set naturally to match
the logging policy π0. Indeed, P can be chosen such as π0 = πP to obtain a bound that
encourages policies with low empirical risk that stay close to the logging policy π0. All of these
connections make PAC-Bayes the perfect candidate for guaranteed performance. The bound
proposed in London and Sandler (2019) however, is not tight enough and produces vacuous
results in practical scenarios (Sakhi et al., 2023a). London and Sandler (2019) avoided using
the bound and derived a learning principle for parametrized softmax policies. This principle
advocates for a L2 regularization towards the parameter of π0:

arg min
θ∈Θ

{︂
R̂
τ
n(πθ) + λ||θ − θ0||2

}︂
.

If this principle improves on CRM (Swaminathan and Joachims, 2015a), these results are far
from being satisfying if we want to have guarantees on the learned policies. To this end, we
continue the development of PAC-Bayes bounds for this problem in Chapters 4 and 5 to finally
obtain tight bounds, that certify the performance of the new policies and can confidently improve
on the logging policy π0. These results are desired in production settings where we would like to
propose a new system that will improve on the current production system with high probability.
This is the case of online decision systems, in particular, recommender systems, where our goal
is to always improve the quality of recommendation to better answer the needs of the users. In
the next section, we cover the history of recommendation and present how the offline contextual
bandit tools fit in the picture, playing a crucial role in redefining the modern internet experience.
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2.3 Online Decision Systems: History of Recommendation

Online decision systems have revolutionized the way we interact with the vast ocean of content
present on the internet. From search engines to recommender systems, they offer a personalized
experience by efficiently exploring the overwhelming amount of information and filtering it to
cater to the specific needs of the users. Although these systems are now ubiquitous, it was not
always the case during the emergence of the internet. Democratizing the access to web-based
information resulted in an exponential increase in the quantity of available data. This increase
alone did not upgrade the internet experience, as having access to non structured, vast amount
of information is not beneficial unless we have tools to efficiently explore it. This issue attracted
research interest which gave birth to the field of IR: Information Retrieval (Rijsbergen, 1979). A
natural application of IR is web search engines, now considered an integral part of the internet
experience. In their simplest form, these engines take in queries like “Is it normal to be depressed
during COVID?” and produce an ordering of, hopefully relevant web pages as a result. If we are
more ambitious, we would like to know what happens when our query is incomplete as we need
implicit information to better answer it? What happens when we do not have an explicit query
at all? What happens when we do not know which musical artist can be interesting to listen to
or which movie we would like to watch? In such scenarios, the field of Recommender Systems
comes into play, providing a needed solution to these challenges. The concept of filtering and
recommending information to users has been around for some time, with early examples dating
back to the 1990s. Belkin and Croft (1992) analyzed the two notions of Information Filtering
and Information Retrieval, arguing that the latter constitutes the fundamental technology be-
hind Search Engines, while Recommender Systems are built with ideas rooted in the former. In
the same year, Goldberg et al. (1992) proposed the "Tapestry" system allowing users, through
a graphical interface, to explicitly rate items and view recommendations based on their prefer-
ences and the ratings of other users with similar tastes. The term "Collaborative Filtering" first
appeared in this work to denote that the information extracted from other users preferences,
combined with your preferences (explaining the collaborative part) would be used to infer what
the system should recommend (explaining the filtering part) to you. During the same period,
content-based filtering also emerged, where recommendations are made based on item features
or attributes. Despite its simplicity, creating an operational content-based recommender system,
even for basic applications, was a significant challenge, as it required a deep (not in a machine
learning sense) understanding of the topic under consideration and the factors influencing the
relationship between users and the topics themselves. While modern machine learning tools,
emerging from the combination of accurate modelling and powerful computations (Blei et al.,
2003; Vaswani et al., 2017b), can now extract valuable factors from the content being recom-
mended, this was not the case in the 1990s. One of the earliest successful real-world projects in
this area was the Music Genome Project, which aimed to capture the essence of music through
its properties. This project represents any song with over 450 properties and describes the inter-
play between each one of them. Once we obtain the song’s representations, the recommendation
procedure follows a natural design. When a user likes a song, the procedure attributes positive
values to its specific properties, promoting similar songs (with similar properties) and bringing
them to the user’s attention. Collaborative filtering and content-based filtering are built on
distinct principles, each with its own strengths and weaknesses. Content-based filtering relies
on a comprehensive understanding of the recommended content, and therefore does not nec-
essarily require input from other users. In contrast, collaborative filtering depends heavily on
user interactions to identify individuals with similar preferences. Content-based filtering may,
however, have limitations when it comes to generating novel or diverse recommendations, since
it is primarily based on an understanding of the properties of the content. Fortunately, both
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Figure 2.5: An example of a rating matrix completion problem. The recommendation proce-
dure f̂ is tasked to predict the missing ratings of the incomplete user-item matrix R using the
information provided by the matrix R and some metadata M about the items, if available.
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Figure 2.6: Typical logs of views of items by users transformed into an implicit feedback matrix.
The user u1 viewed the item I1 twice, its row is highlighted with orange in the IF matrix where
these views were deduplicated and transformed to a positive signal for the item I1 (column
highlighted with yellow).

approaches offer distinct benefits, and the most successful recommender systems in use combine
the strengths of both methods (Vasile et al., 2016; Jeunen et al., 2020). The early recommender
systems were often limited by the availability of data, as well as by the computational resources
needed to process that data. However, the ideas behind them laid the groundwork for more
sophisticated recommendation paradigms that would emerge in the years to come. Even if it is
by no means our ambition to provide an exhaustive covering of the recommendation research
landscape in this introduction, we want to give the reader in the next paragraphs different
perspectives on how recommendation is modelled.

2.3.1 Recommendation as Preference Prediction

The "Tapestry" system, which was introduced earlier, approached the recommendation problem
as predicting the rating that a user would give to an item. This approach gained further
popularity with the work of Resnick et al. (1994) within the GroupLens Research Lab, which
provided a complete architecture to support research in this area. The idea is to have different
users rate items and gather this information in a dataset. Since asking each user to rate all
items is not feasible (think about massive movie catalogues, for example), users are randomly
exposed to a few items for which they give a rating as shown in Harper and Konstan (2015).
These ratings are then compiled and represented in a user-item rating matrix R of size U × I
with U and I respectively the number of users and the number of items. Each entry in R, Ru,i,
represents the given or missing rating of user u to item i. The goal is to learn a procedure f̂ that
can predict the missing ratings and complete the matrix R. In addition to the ratings’ dataset,
some metadata about the items M (relevant properties of the items) is often available (Harper
and Konstan, 2015). This allows practitioners to explore different ways to combine the users
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ratings data (collaborative filtering) and item specific data (content-based filtering) to obtain a
procedure that produces the most accurate predictions. The quality of the predictions is typically
measured by assessing the difference between the true and estimated ratings on a separate test
set (Salakhutdinov and Mnih, 2007). Figure 2.5 visualises an example of an incomplete rating
dataset and the expected output of the procedure f̂ . Given R and/or M as input, the learned
procedure f̂ generates potential ratings for every user item pair. These complete ratings are
then used to identify items that may be of interest to each user by selecting the ones with
high predicted ratings. The underlying assumption of this approach is that items with higher
ratings are considered suitable candidates for recommendation. This framework is referred to in
the literature as the "explicit feedback" setting, as it requires users to explicitly provide ratings
on a predefined scale. Recommendation based on explicit feedback has had a huge practical
success, and were responsible for the success of many tech companies. For example, Netflix,
a DVD rental service at the time, launched a competition rewarding a million US dollars to
whoever achieves the smallest reconstruction error of their rating dataset. Despite its success,
the "explicit feedback" paradigm suffers from significant limitations. The fundamental premise
of the approach is to build a method that, gathers in an unbiased manner, genuine ratings that
accurately reflect the user’s true appreciation of items. However, obtaining this data requires the
system to explicitly ask users to rate items, which can be costly and may be detrimental to the
user’s experience. To deal with this issue, these systems provide a non-intrusive way to rate an
item; a like button to express if they loved the content they interacted with, or a rating system
for the product bought from a retail store. These methods are integrated in the system and do
not necessarily harm the user experience, but they give the entire freedom to the user to rate an
item or not. This introduces an additional bias to the rating matrix as the presence of a rating
is influenced by the decision of the user, making ratings "Missing Not At Random" (MNAR)
(Yang et al., 2018). For example, once a user watches a movie, how much they enjoyed the
movie influences directly the likelihood that they will leave a rating. Additionally, new ratings
of an item tend to be biased by all the previous ratings that item received, making it hard to
measure how much a new user really likes an item. Actually, in depth studies have shown that
most ratings collected by these systems are biased, and correlate poorly with the true interest of
users, as evidenced by Zhang et al. (2017). A potentially better signal to consider is the organic
behaviour of users. By exploiting the information that is inherent to a user interacting with an
item, we can avoid the need for explicit ratings. Indeed, we can reasonably assume that a user
will mostly view retail product pages of items they are interested in, or movies and series that
they think they will enjoy. This information is denoted in the literature by the "implicit feedback"
as it is not asked directly from the user but reflects to a certain extent its interests through his
organic interactions with the system. Implicit-feedback recommendation took the industry by
storm and dominated the industrial applications in recent years. For example, Gomez-Uribe
and Hunt (2016) describe the recommender system recently used by Netflix and show that
they moved from their heavy dependence on rating feedback to a simpler feedback mechanism,
focusing primarily on signal acquired from interaction data. This interaction data can come
in different forms depending on the nature of the service provided. For online recommender
systems, the most common form of interaction is a view/visit (or multiple views/visits) of an
item by a user. In general, these views are logged, processed and deduplicated to build a matrix
of binary, positive-only signal as shown in Figure 2.6. This simple organic signal differs from the
explicit rating given by users, as it cannot encode negative information. When a user interacts
with an item, we assume that the user is interested in the item. In the other hand, when an
interaction is missing from the data, we do not know whether this means that the user is simply
unaware of the item, or whether it is irrelevant to the user. The absence of negative signal
motivated new collaborative filtering algorithms, sometimes augmented with item-related data,
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