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Abstract

We study the problem of Bayesian fixed-
budget best-arm identification (BAI) in struc-
tured bandits. We propose an algorithm that
uses fixed allocations based on the prior infor-
mation and the structure of the environment.
We provide theoretical bounds on its perfor-
mance across diverse models, including the
first prior-dependent upper bounds for linear
and hierarchical BAI. Our key contribution
lies in introducing novel proof techniques that
yield tighter bounds for multi-armed BAI com-
pared to existing approaches. Our work pro-
vides new insights into Bayesian fixed-budget
BAI in structured bandits, and extensive ex-
periments demonstrate the consistent and ro-
bust performance of our method in practice
across various settings.

1 INTRODUCTION

Best arm identification (BAI) addresses the challenge
of finding the optimal arm in a bandit environment
(Lattimore and Szepesvári, 2020), with wide-ranging
applications in online advertising, drug discovery or
hyperparameter tuning. BAI is commonly approached
through two primary paradigms: fixed-confidence and
fixed-budget. In the fixed-confidence setting (Even-
Dar et al., 2006; Kaufmann et al., 2016), the objec-
tive is to find the optimal arm with a pre-specified
confidence level. Conversely, fixed-budget BAI (e.g.,
Audibert et al., 2010) involves identifying the optimal
arm within a fixed number of observations. Within this
fixed-budget context, two main metrics are used: the
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probability of error (PoE) (Audibert et al., 2010; Karnin
et al., 2013; Carpentier and Locatelli, 2016), which is
the likelihood of incorrectly identifying the optimal
arm, and the simple regret (Bubeck et al., 2009; Russo,
2016; Komiyama et al., 2023), which corresponds to
the expected performance disparity between the chosen
and the optimal arm. We study PoE minimization in
fixed-budget BAI in the Bayesian setting (Atsidakou
et al., 2022), a problem closer to statistical hypothe-
sis testing (Bernardo and Rueda, 2002) than to regret
minimization (Lattimore and Szepesvári, 2020), and
often viewed as a more difficult question in general
(Carpentier and Locatelli, 2016; Degenne, 2023).

The question of adaptivity in fixed-budget BAI.
Existing algorithms for PoE minimization in fixed-
budget BAI are largely frequentist and often employ
elimination strategies, such as Sequential Halving (SH)
(Karnin et al., 2013), that can be derived for linear
models using optimal designs (Azizi et al., 2021; Hoff-
man et al., 2014; Katz-Samuels et al., 2020; Yang and
Tan, 2022). These algorithms are called adaptive in the
sense that the sampling strategy progressively allocates
more budget to higher-valued arms. That being said,
BAI is a hard problem whose complexity remains hard
to fully understand (Degenne, 2023), and for which
simple baselines can be deceivingly strong on some
problem instances. Wang et al. (2024) showed that for
two-armed Bernoulli bandits, there is no algorithm that
is strictly better than the uniform sampling algorithm
in all instances when comparing the frequentist PoE.
In fact, Degenne (2023) established that there is no
superior adaptive algorithms in several BAI problems,
including Gaussian BAI. This questions the role of
adaptivity for fixed-budget BAI problems (Qin, 2022).

In the Bayesian setting, however, when prior knowledge
is available to the learner, the competitiveness of the
uniform strategy must be reassessed. As a motivating
example, consider a scenario with 3 arms, where prior
information strongly suggests that either of the first two
arms is more likely to be optimal than the third. How
much budget should then be allocated to the seemingly
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suboptimal third arm? Moreover, if there is greater
confidence in the first arm compared to the second,
what is the optimal budget distribution between them?
In this paper, we address the following general question:
How to choose a prior-dependent fixed allocation of the
budget to guarantee a low expected PoE?

Prior works on Bayesian BAI. Bayesian ap-
proaches have focused on the minimization of the simple
regret (Azizi et al., 2023; Komiyama et al., 2023), or
were studied under a frequentist lens (Hoffman et al.,
2014; Yang et al., 2024), which do not capture the ad-
vantages of knowing informative priors. Only recently,
Atsidakou et al. (2022) introduced a Bayesian version
of Sequential Halving for BAI in the K-armed Gaussian
multi-armed bandit (MAB) setting. They incorporate
prior knowledge in two ways: the allocations in each
elimination phase prioritize arms with higher observa-
tion noise variance, and the final decision is based on
the posterior mean which is a function of the prior and
of the observations. However, their analysis directly
relies on averaging frequentist upper bounds over the
prior and require assumptions on the prior distribution;
unfortunately, for technical reasons,1 it does not gener-
alize to more informative priors and structured bandits.
In particular, to the best of our knowledge, it cannot
be extended to linear bandits through optimal design.
Our work provides a novel algorithm that naturally
applies to structured bandits and gives a general an-
swer to Bayesian fixed-budget BAI with non-adaptive
allocation strategies.

Contributions. 1) We present and analyze a fixed-
budget BAI algorithm, which we call Prior-Informed
BAI (PI-BAI), that leverages prior information for ef-
ficient exploration. Our main contributions include
establishing prior-dependent upper bounds on its ex-
pected PoE in multi-armed, linear, and hierarchical
bandits. Specifically, in the MAB setting, our upper
bound is tighter and valid under milder assumptions
on the prior than that of Atsidakou et al. (2022). 2)
The proof techniques developed for PI-BAI provide
a fully Bayesian perspective, significantly diverging
from existing proofs that rely on frequentist techniques.
This gives a more comprehensive framework for un-
derstanding and analyzing Bayesian BAI algorithms,
while also enabling us to relax previously held assump-
tions. 3) As a result, unlike earlier approaches, our
algorithms and proofs are naturally applicable to struc-
tured problems, such as linear and hierarchical bandits,
leading to the first Bayesian BAI algorithm with a
prior-dependent PoE bound in these settings. 4) We
empirically evaluate PI-BAI’s variants in numerous se-
tups. Our experiments on synthetic and real-world

1We provide a detailed discussion in Appendix A and Sec-
tion 5.

data show the generality of PI-BAI and highlight its
good performance.

2 A NEW ALGORITHM CONCEPT

Notation. For any positive integer K, let ∆K be the
K-simplex and ∆+

K = {ω ∈ ∆K ; ωi > 0 , ∀i ∈ [K]},
where [K] = {1, 2, . . . ,K}. For any positive-definite
matrix A ∈ Rd×d and vector v ∈ Rd, we define ∥v∥A =√
v⊤Av. Also, λ1(A) and λd(A) denote the maximum

and minimum eigenvalues of A, respectively. We denote
by ei the i-th vector of the canonical basis, and by KL
the Kullback-Leibler divergence.

Background. We consider scenarios involving K
arms. In each round t ∈ [n], the agent selects an
arm At ∈ [K], and then receives a stochastic reward
Yt ∼ P (·; θ,At), where θ is an unknown parameter vec-
tor and P (·; θ, i) is the known reward distribution of
arm i, given θ. We denote by r(i; θ) = EY∼P (·;θ,i) [Y ]
the mean reward of arm i, given θ. We adopt the
Bayesian view where θ is assumed to be sampled from
a known prior distribution P0. Given a bandit in-
stance characterized by θ ∼ P0, the goal is to find the
(unique) optimal arm i∗(θ) = argmaxi∈[K] r(i; θ) by
interacting with the bandit instance for a fixed-budget
of n rounds. These interactions are summarized by the
history Hn = {(At, Yt)}nt=1, and we denote Jn ∈ [K]
the arm selected by the agent after n rounds. In this
Bayesian setting, Atsidakou et al. (2022) study the
Bayesian risk, which they call expected PoE :

Pn = E
[
P
(
Jn ̸= i∗(θ) | θ

)]
,

that corresponds to the average PoE over instances
sampled from the prior, θ ∼ P0. This is different from
the frequentist counterpart where the performance is
assessed for a single θ.

2.1 Prior-Informed BAI

We consider the following algorithm:

Algorithm 1 Prior-Informed BAI: PI-BAI(Alloc)
Input: Budget n, prior P0, function Alloc (e.g. Sec 3)
Compute allocations ω = Alloc(n, P0).
for i = 1, . . . ,K do

Get ni = ⌊ωin⌋ samples of arm i
Compute mean posterior reward E [r(i; θ) | Hn]

Set Jn = argmaxi∈[K] E [r(i; θ) | Hn].

PI-BAI (Algorithm 1) takes as input a prior distribution
P0, a budget n and an allocation function Alloc. Then,
PI-BAI uses the function Alloc to compute a vector of
prior-dependent allocation weights ω = (ωi)i∈[K] ∈ ∆K .
This vector is central to the good performance of our
method; choices how to compute it are discussed in
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details in the next section. After that, PI-BAI proceeds
in a straightforward manner: it collects ni = ⌊ωin⌋
samples for each arm i, and finally returns the arm
with the highest mean posterior reward, defined as

Jn = argmaxi∈[K] E [r(i; θ) | Hn] . (1)

This posterior expectation can be computed in closed-
form in Gaussian bandits with Gaussian priors. Note
that a fully Bayesian algorithm would set Jn =
argminj∈[K] P(j ̸= i∗(θ) |Hn); however, this cannot
be computed explicitly even in the simple Gaussian
setting, and we instead opt for a decision rule that is
deterministic conditionally on observations, as in top-
two based algorithms in the fixed-confidence setting
(Jourdan et al., 2022).

Decision rule (1) naturally generalizes to structured
bandit settings: the structure is a direct prior informa-
tion that is taken into account in the computation of
the posterior updates and the allocation vector. Sim-
ilarly, and despite additional technicalities, our novel
proof scheme (see Section 5) is preserved across all
settings we consider.

Analysis overview. For any prior-dependent alloca-
tion vector ω ∈ ∆+

K (computed by Alloc), we derive
an upper bound on the PoE in multi-armed, linear
and hierarchical bandits (see below Theorems 4.1, 4.2
and 4.4) of the form

Pn ≤ C(P0, ω, n), (2)

where the bound C depends on the prior P0, the budget
n and the allocation weights ω. The bound is valid
for any ω ∈ ∆+

K , but its guarantee, as well as the
performance of the algorithm, weakens for worse choices
of ω. To alleviate this, a key aspect of our work is to
derive good (prior-dependent) allocation strategies.

3 ALLOCATIONS STRATEGIES

In this section, we propose three approaches to derive
allocation strategies to be used in PI-BAI, each leverag-
ing the prior in different ways, and we show in the next
section how they can be implemented in structured
bandit models.

Allocation by optimization. Since the bound (2)
is valid for any ω ∈ ∆+

K , we can define the optimized
allocation weights as

Opt(n, P0) = argminw∈∆+
K
C(P0, ω, n) . (3)

We call the resulting algorithm PI-BAI(Opt), where we
set the allocation function Alloc = Opt. In general,
(3) is non-convex and may require advanced numerical
methods (e.g., L-BFGS-B of Virtanen et al., 2020) to

find a suitable optimum. Fortunately, this optimization
is performed only once (offline) before interacting with
the environment.

In our experiments, as a heuristic, we define a mixture
of optimized weights: αωopt

i + (1 − α)
µ0,iσ0,i∑

k∈[K] µ0,kσ0,k

where α ∈ (0, 1) whose performance is still covered
by our upper bound. We tested various α values (Ap-
pendix D.7) and found the best performance at α ≈ 0.5.
For notational simplicity, we still refer to this allocation
weight (with α = 0.5) as ωopt.

Allocation by G-optimal design. Optimal experi-
mental design (Lattimore and Szepesvári, 2020, Chap-
ter 21) is an optimization problem that returns an
allocation over arms that balances exploration and ex-
ploitation, usually used in linear bandit algorithms with
fixed-design (Abbasi-Yadkori et al., 2011). We notice
that this idea can also be leveraged to obtain allocations
for Bayesian BAI. Finding an (approximate) Bayesian
G-optimal design (López-Fidalgo, 2023, Chapter 4) is
equivalent to maximizing the log-determinant of the
regularized information matrix defined as

G-opt(n, P0) = argmax
ω∈∆+

K

log det
( n

σ2
Σω +Σ−1

0

)
, (4)

where (x1, . . . xk) are the action vectors (unit vectors
in the MAB setting) and Σω =

∑
k∈[K]ωkxkx

⊤
k . This

leads to budget allocations that minimize the worst-
case posterior variance in all directions.

Note that both allocation weights Opt(n, P0) (3) and
G-opt(n, P0) (4) are prior-dependent and fixed in ad-
vance before interacting with the environment (hence
they are independent of the actual instantiation θ of
the environment). Therefore, both enjoy the theoreti-
cal guarantees we derive in Sections 4.1 and 4.2 that
hold for any allocation weights fixed in advance.

Allocation by warm-up. Finally, we introduce an
improper ‘adaptive’ strategy that calls a possibly prior-
dependent warm-up policy πw to interact with the ban-
dit environment for nw rounds (the warm-up phase).
This no longer corresponds exactly to the PI-BAI algo-
rithm as this Alloc strategy also interacts with the envi-
ronment and outputs instance-dependent weights ωπw

,
thus our theoretical guarantees do not apply to this
framework. The warm-up policy can be any decision-
making strategy that (preferably) also uses the prior.
Inspired by its strong performance in BAI (Lee et al.,
2024), we use Thompson sampling for πw. The allo-
cation weights are then set proportional to the num-
ber of pulls for each arm during the warm-up phase:
ωTS
i = 1

nw

∑
t∈[nw] 1{At = i} for all i ∈ [K]. These

strategies are further discussed in Appendix B.4.
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4 BANDIT SETTINGS

In this section, we present how to concretely implement
our algorithm PI-BAI for several major bandit settings
using the three types of allocations discussed above,
and prove the corresponding theoretical guarantees.

4.1 Multi-Armed Bandits

In this setting, each component of θ = (θi)i∈[K] is sam-
pled independently from the prior distribution. We
focus on the Gaussian case where θi ∼ N (µ0,i, σ

2
0,i),

with µ0,i and σ2
0,i being the known prior reward mean

and variance for arm i. Then, given θ, the reward dis-
tribution of arm i is N (θi, σ

2) where σ2 is the (known)
observation noise variance,2

θi ∼ N (µ0,i, σ
2
0,i) ∀i ∈ [K]

Yt | θ,At ∼ N (θAt , σ
2) ∀t ∈ [n] . (5)

Under (5), the posterior distribution of θi given Hn is
a Gaussian N (µ̂n,i, σ

2
n,i) (Bishop, 2006) with

σ̂−2
n,i = σ−2

0,i + niσ
−2 , µ̂n,i = σ̂2

n,i

(
µ0,i

σ2
0,i

+
Bn,i

σ2

)
, (6)

where, defining Ti = {t ∈ [n], At = i} to be the set of
rounds when arm i is chosen, ni = |Ti| is the number
of times arm i is chosen and Bn,i =

∑
t∈Ti

Yt is the
sum of rewards of arm i. The mean posterior reward
in this case is E [r(i; θ) | Hn] = µ̂n,i.

PoE bound for MAB. Theorem 4.1 presents an
upper bound on the expected PoE of PI-BAI for MAB
(5) for a fixed and possibly prior-dependent choice of
positive allocation weights. The general proof scheme
is presented in Section 5, and the full proof is provided
in Appendix C.2.
Theorem 4.1 (Upper bound for MAB). For all ω ∈
∆+

K , the expected PoE of PI-BAI that uses allocation
ω under the MAB problem (5) is upper bounded as

Pn ≤
∑

i,j∈[K]
i̸=j

1√
1+nϕi,j(ω)

exp
(
− (µ0,i−µ0,j)

2

2(σ2
0,i+σ2

0,j)

)
,

where

ϕi,j(ω) =
σ4
0,iωi

(
σ2

n + ωjσ
2
0,j

)
+ σ4

0,jωj

(
σ2

n + ωiσ
2
0,i

)
σ2σ2

0,i

(
σ2

n + ωjσ2
0,j

)
+ σ2σ2

0,j

(
σ2

n + ωiσ2
0,i

) .

In particular, ϕi,j(ω) = Ω(1) depends on the prior
parameters and allocation weights, and Pn = O(1/

√
n).

As a sanity check, note that if the prior is informative,
either with small prior variances σ2

0,i → 0 or large prior

2The noise variance σ2 could be arm-dependent and
we can provide a similar analysis, but we choose to keep
notation simple.

gaps |µ0,i − µ0,j | → ∞, then Pn → 0 for any fixed
allocation weights ω ∈ ∆+

K .

Tightness of our bound. First we compare our upper
bound to the lower bound of Atsidakou et al. (2022) for
the 2-armed Gaussian setting with σ2

0,1 = σ2
0,2 = σ2

0 :

e
−

(µ0,1−µ0,2)2

4σ2
0√

1+
nσ2

0
2σ2

Th. 4.1
≥ Pn

LB
≥ e

−
(µ0,1−µ0,2)2

4σ2
0

2e

√
1+

2n(8 log(2n)+1)σ2
0

σ2

Comparing the formulas above, we can see that in 2-
arm problems we achieve optimal guarantees up to log
factors and multiplicative universal constants.

To further test the tightness of our bound, we nu-
merically compare it with that of BayesElim (Atsi-
dakou et al., 2022) using the 3-armed bandit exam-
ple in Section 1, where one arm is a priori subop-
timal, while one of the other two is a priori opti-
mal, reflected by prior means µ0 = (1, 1.9, 2). We
consider two scenarios: one with homogeneous vari-
ances σ0,1 = σ0,2 = σ0,3 = 0.3 and another with het-
erogeneous variances (σ0,1, σ0,2, σ0,3) = (0.1, 0.5, 0.5).
Since BayesElim’s bound does not handle heteroge-
neous prior variances, we use an average prior variance
σ2
0 = 1

K

∑
i∈[K] σ

2
0,i for comparison. PI-BAI is instan-

tiated with the following allocation strategies: Opt,
using(3) with Theorem 4.1; Uniform, with ωi = 1/K
for all i; Random, where ωi are generated uniformly at
random from [0, 1] and then normalized to sum up to
1; and Heuristic, which gives more weight to arms with
higher prior means and variances as ωi ∝ µ0,iσ0,i.

As shown in Figure 1, our bound is tighter than the
upper bound of Atsidakou et al. (2022) for any allo-
cations and in both variance settings. This gain is
due to two main reasons: our bound is tighter by a
factor log

3/2
2 (K) because our algorithm does not rely

on elimination phases. Moreover, our proof technique
yields terms that explicitly depend on the structure
of the prior, which provides deeper insights beyond
the O(1/

√
n) rate typically obtained by averaging the

frequentist bound of O(e−n/f(θ)) (Audibert et al., 2010;
Carpentier and Locatelli, 2016) over a Gaussian prior,
though it does not necessarily result in faster rates.

Allocation by optimization: a simple example in
the MAB setting. To provide intuition, we present
the explicit solution of (3) with Theorem 4.1 for the
MAB setting with K = 2: denoting ωopt = Opt(n, P0),

ωopt
1 = Π[0,1]

(
1
2 − (σ2

0,2−σ2
0,1)σ

2

2nσ2
0,1σ

2
0,2

)
, and ωopt

2 = 1− ωopt
1 ,

where Π[a,b](·) denotes truncation into [a, b]. First, if
the prior variances are equal (σ2

0,1 = σ2
0,2), allocating

an equal number of samples to each arm is optimal.
Conversely, if σ2

0,1 ≪ σ2
0,2 and the budget n is small,



Nicolas Nguyen∗, Imad Aouali∗, András György, Claire Vernade

50 100 150 200
Budget n

0.4
0.5
0.6
0.7
0.8
0.9
1.0

Up
pe

r b
ou

nd
 v

al
ue

Homogeneous setting

50 100 150 200
Budget n

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Heterogeneous setting

Optimal
Uniform

Random
Heuristic

(Atsidakou et al., 2022)

Figure 1: Bound of PI-BAI with different weights com-
pared to BayesElim (Atsidakou et al., 2022).

we get ωopt
2 ≫ ωopt

1 , allocating most of the budget
to the arm with higher prior variance (lower initial
confidence). This is only relevant for small budgets
since when n → +∞, the optimal strategy converges
to uniform allocation as the influence of the prior van-
ishes asymptotically. On the other hand, a satura-
tion phenomenon happens for ‘too small’ budgets: if
n < 2σ2

∣∣∣σ2
0,2

σ2
0,1

− σ2
0,1

σ2
0,2

∣∣∣, the weight of the arm with larger
prior variance is equal to 1 due to the truncation. Fi-
nally, this allocation strategy does not depend on the
prior gap ∆0, which is expected as identifying the opti-
mal arm is equivalent to identifying the worst arm in
the case of two arms. This equivalence does not hold
when K > 2.

Allocation by optimal design. G-optimal design
can be applied for MAB, by using xi = ei for any
i ∈ [K] and Σ0 = diag(σ2

0,i)i∈[K].

Allocation by warm-up. Thompson Sampling is
well-understood for MAB (Russo et al., 2018) even
beyond Gaussian priors so this allocation strategy is
fairly versatil, though not covered by our theory since
the resulting weights are instance-dependent.

4.2 Linear Bandits

In linear bandits (Abbasi-Yadkori et al., 2011),
arms share a common low-dimensional representation
through the parameter θ ∈ Rd. We denote X =
{x1, . . . xK} the set of arms where each xi ∈ Rd. In the
Gaussian case, the reward distribution is parametrized
by θ,

θ ∼ N (µ0,Σ0)

Yt | θ,At ∼ N (θ⊤xAt , σ
2) ∀t ∈ [n] , (7)

for some prior mean µ0 ∈ Rd and variance Σ0 ∈ Rd×d.
Similarly to (5), this model offers closed-form formulas
(Agrawal and Goyal, 2013), where the posterior of θ
given the history Hn containing ni samples from arm

i is a Gaussian N (µ̂n,Σn):

Σ̂−1
n = Σ−1

0 + σ−2
∑

i∈[K] nixix
⊤
i

µ̂n = Σ̂n

(
Σ−1

0 µ0 + σ−2Bn

)
, (8)

where Bn =
∑

t∈[n] YtxAt
. The mean posterior reward

of arm i is given by E [r(i; θ) | Hn] = µ̂⊤
n xi. Note

that the MAB (5) can be recovered from (7) when
xi = ei ∈ RK and Σ0 = diag(σ2

0,i)i∈[K].

PoE bound for linear bandits. Importantly, our
error analysis extends to structured bandit problems.
We begin with linear bandits in the next theorem and
discuss the specific case of hierarchical models further
below.
Theorem 4.2 (Upper bound for linear bandits). As-
sume that xi ̸= xj for any i ̸= j, and that X spans Rd.
Then, for all ω ∈ ∆+

K , the expected PoE of PI-BAI
using allocation ω under the linear bandit problem (7)
is upper bounded as

Pn ≤
∑

i,j∈[K]
i ̸=j

1√
1+

nci,j(ω)

∥xi−xj∥2Σ̃n

exp

(
− (µ⊤

0 xi−µ⊤
0 xj)

2

2∥xi−xj∥2
Σ0

)
,

where ci,j(ω) is given in (26), and Σ̃n = ( 1nΣ
−1
0 +

σ−2
∑

i∈[K] wixix
⊤
i )

−1 is deterministic.

In particular, Pn = O(1/
√
n) and we recover Theo-

rem 4.1 when xi = ei ∈ RK and Σ0 = diag(σ2
0,i)i∈[K].

Full expressions and proofs are given in Appendix C.3.
Also, this bound captures the benefit of using informa-
tive priors since Pn → 0 when the prior variances are
small, that is, Σ0 → 0L×L, or when the prior gaps are
large, in the sense that |µ⊤

0 xi − µ⊤
0 xj | → ∞.

Allocation by optimization. Similarly to the MAB
setting, the bound in Theorem 4.2 can be numerically
optimized. This is a non-convex problem so there is no
guarantee to reach a global optimum,3 and, in practice,
initialization plays an important role.

Allocation by warm-up. We use Linear Thompson
Sampling (e.g., Abeille and Lazaric, 2017) with the
given informed prior N (µ0,Σ0).

G-optimal design allocations. In this setting, the
most appropriate allocation strategy is by Bayesian G-
optimal design (4). We specifically compute our upper
bound with this choice below.
Corollary 4.3 (Upper bound of PI-BAI(G-opt)). Un-
der the assumptions of Theorem 4.2, the expected PoE
of PI-BAI(G-opt) in problem (7) with a diagonal co-
variance matrix Σ0 is upper bounded as

Pn ≤
∑

i,j∈[K]
i ̸=j

1√
1+ n

2dσ2 ci,j
exp

(
− (µ⊤

0 xi−µ⊤
0 xj)

2

2∥xi−xj∥2
Σ0

)
,

3Our code is provided for reproducibility purposes.
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where ci,j = Ω(1). The full expressions and proofs are
given in Appendix C.3.

4.3 Hierarchical Bandits

Hierarchical (or mixed-effect) models are rich models
commonly used in practice where actions are typically
structured into clusters, or effects (Aouali et al., 2023;
Bishop, 2006; Hong et al., 2022b; Wainwright et al.,
2008). The correlations are then captured as

µ ∼ N (ν,Σ)

θi ∼ N (b⊤i µ, σ
2
0,i) ∀i ∈ [K]

Yt | µ, θ,At ∼ N (θAt
, σ2) ∀t ∈ [n] (9)

where µ = (µℓ)ℓ∈[L] is an unknown latent parameter
composed of L effects µℓ and it is sampled from a mul-
tivariate Gaussian with mean ν ∈ RL and covariance
Σ ∈ RL×L. Then, given µ, the mean rewards θi are
independently sampled as θi ∼ N (b⊤i µ, σ

2
0,i), where

(bi)i∈[K] represent known mixing weights. In particular,
b⊤i µ creates a linear mixture of the L effects, with bi,ℓ
indicating a known score that quantifies the associa-
tion between arm i and the effect ℓ. Concrete examples
of bi,ℓ are provided in Appendix B.1. Note that arm
correlations arise because θi are derived from the same
effect parameter µ. Finally, given µ and θ, the reward
distribution of arm i is similar to the MAB (5) and
only depends on θi as N (θi, σ

2).

Similarly to the linear case, an explicit marginal pos-
terior distribution P(θi | Hn) = N (µ̂n,i, σ̂

2
n,i) can be

computed for closed-form posterior mean and variance
parameters (see Appendix C.1).

PoE bound for hierarchical bandits. We derive a
bound on the PoE that takes advantage of the hierarchi-
cal structure (9). To the best of our knowledge, these
are the first prior-dependent bounds for fixed-budget
Bayesian BAI in these settings.

Theorem 4.4 (Upper bound for hierarchical bandits).
For all ω ∈ ∆+

K , the expected PoE of PI-BAI using
allocaiton ω under the hierarchical bandit problem (9)
is upper bounded as

Pn ≤
∑

i,j∈[K]
i̸=j

1√
1+

ci,j(ω)

σ̂n,i+σ̂n,j

exp
(

−(ν⊤bi−ν⊤bj)
2

2(∥bi−bj∥2
Σ+σ2

0,i+σ2
0,j)

)
,

where ci,j(ω) is given in (30) and σ̂n,i in (17). ci,j =
Ω(1) and σ̂2

n,i = Ω(1/n), and they depend on both the
prior parameters and allocation weights. In particular,
Pn = O(1/

√
n). Full expressions and proofs are given

in Appendix C.4.

The term ∥bi − bj∥2Σ +σ2
0,i +σ2

0,j accounts for the prior
uncertainty of both arms and effects. If the effects are

deterministic (Σ = 0L×L) then our bound recovers the
upper bound of MAB with prior mean µ0,i = ν⊤bi. On
the other hand, if the arms are deterministic given the
effects (σ2

0,i = 0), the bound only depends on the effect
covariance. Finally, if the prior is informative by its
gap (|ν⊤bi−ν⊤bj | → ∞ ) or by its variance (Σ → 0L×L

and σ2
0,i → 0), then Pn → 0.

Allocation by optimization. Again, numerical op-
timization can be leveraged for the upper bound in
Theorem 4.4, but in our experiments (see Section 6)
we see that this method reaches its limits due to the
complexity of the bound to be optimized.

Allocation by optimal design. (9) is a special case
of a linear bandit (7), by realizing that θi = b⊤i µ+ ηi
where ηi ∼ N (0, σ2

0,i) and the ηi are independent of
µ. Hence, (9) can be rewritten by replacing ν with
ν̄ ∈ RL+K defined as ν̄⊤ = (ν⊤, 0, . . . , 0) and Σ with
a block-diagonal matrix Σ̄ = ⟨Σ, σ2

0,1, . . . , σ
2
0,K⟩ with

actions b̄i ∈ RL+K defined as b̄⊤i = (b⊤i , e
⊤
i ), leading to

a linear bandit

µ̄ ∼ N (ν̄, Σ̄)

Yt | µ̄, At ∼ N (b̄⊤At
µ̄, σ2) ∀t ∈ [n] . (10)

The only practical benefit of this point of view is to
allow us to compute G-optimal design allocations (4)
and inherit the theoretical guaranties from the linear
case. In general, adhering to the initial formulation
in (9) and the subsequent derivations in (17) is more
computationally efficient and this motivates the concept
of hierarchical bandits in the first place. Additional
discussions can be found in Appendix B.2.

Allocation by warm-up. A mixed-effect Thomp-
son Sampling algorithm has been proposed recently
by Aouali et al. (2023), so we can directly use this
algorithm as warm up with our given prior parameters.

4.4 Robustness to Prior Misspecification

While the assumption of knowing the prior distribution
is common in the Bayesian bandit literature (Russo
et al., 2018; Kveton et al., 2021), we acknowledge that
it may not always be the case in practice. Lemma 4.5
quantifies the effect of prior misspecification when using
the uniform allocation strategy yielding ω = ( 1

K )i∈[K],
and when the prior variances are homogeneous. Its
proof is provided in Appendix C.5.

Lemma 4.5 (Upper bound for PI-BAI with mis-
specified prior parameters). The expected PoE of
PI-BAI(Uni) under the MAB problem (5) with mis-
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specified priors N (µ̃0,i, σ̃
2
0)

4 is upper bounded as

Pn ≤
∑

i,j∈[K]
i ̸=j

1√
1+

nσ2
0

Kσ2

exp
(
− (µ0,i−µ0,j)

2

4σ2
0

)
dn(i, j) ,

where
dn(i, j) = exp

(
KL(Pij ,P̃ij)

1+
nσ2

0
Kσ2

)
,

with Pij = N (µ0,i − µ0,j , 2σ
2
0) and P̃ij = N (

σ̃2
0

σ2
0
(µ̃0,i −

µ̃0,j), 2σ
2
0) are respectively the true and the misspeci-

fied prior gap distributions. Note that KL(Pij , P̃ij) =
σ2
0

σ̃4
0

( σ̃2
0

σ2
0
(µ0,i − µ0,j)− (µ̃0,i − µ̃0,j)

)2.
In case of well specified variances, the misspecification
factor dn(i, j) depends only on the true and assumed
prior gaps (µ0,i−µ0,j) and (µ̃0,i− µ̃0,j). If the assumed
prior preserves the prior gaps, then dn(i, j) = 1, and
Theorem 4.1 is recovered. However, if the prior gaps are
misspecified, then (dn(i, j) > 1), which increases the
bound obtained in Theorem 4.1. This multiplicative
factor does not affect the overall convergence rate of
O(1/

√
n), and dn = eO(1/n), indicating that the impact

of prior misspecification becomes less significant as the
budget increases. This is also observed empirically (see
Appendix D.1). That said, we give two solutions to
circumvent the assumption of prior knowledge.

Offline learning of priors. Fixed-budget BAI can be
significantly enhanced by incorporating readily avail-
able offline data as follows. We first estimate arm
means using offline data (potentially noisy). Then, we
model the uncertainty in these estimates with Gaussian
covariance, creating a Gaussian prior for multi-armed
and linear bandits. For hierarchical bandits, we fit a
Gaussian Mixture Model (GMM) to the offline esti-
mates, resulting in the desired hierarchical prior. For
instance, in our MovieLens experiments (Section 6), we
derived the offline estimates through low-rank matrix
factorization of the user-item ratings.

Online learning of priors using hierarchical mod-
els. In the absence of offline data, one approach to
address prior misspecification online is to use hierarchi-
cal models. For example, consider the MAB problem
(5), where the prior means µ0 are now unknown. Then
we adopt the hierarchical model (9), assuming that µ0

is sampled from a known hyper-prior as µ0 ∼ N (ν,Σ),
with L = K and canonical mixing weights bi = ei ∈ RK .
This approach to learning the prior online has good em-
pirical performance (Section 6) and it can be extended
to linear and hierarchical bandits.

4Formally, this means that the mean posterior reward for
arm i is calculated using the misspecified prior N (µ̃0,i, σ̃

2
0)

instead of the true prior N (µ0,i, σ
2
0).

5 GENERAL PROOF SCHEME

We outline the key technical insights to derive our
Bayesian proofs. The idea is general and can be ap-
plied to all our settings (MAB, linear and hierarchical
bandits). Specific proofs for these settings are provided
in Appendix C.

From Frequentist to Bayesian proof. To analyze
their algorithm in the MAB setting, Atsidakou et al.
(2022) rely on the strong restriction that σ0,i = σ0 for
all arms i ∈ [K] and tune their allocations as a function
of the noise variance σ2 such that in the Gaussian
setting, the posterior variances σ̂2

n,i in (6) are equal
for all arms i ∈ [K]. This assumption is needed to
directly leverage results from Karnin et al. (2013), thus
allowing them to bound the frequentist PoE as P

(
Jn ̸=

i∗(θ) | θ
)
≤ B(θ) for a fixed instance θ. Then, the

expected PoE, Pn = E
[
P
(
Jn ̸= i∗(θ) | θ

)]
, is bounded

by directly computing Eθ∼P0 [B(θ)]. We believe it is not
possible to extend such technique for general choices of
allocations ni and prior variances σ2

0,i. Thus, we pursue
an alternative approach, establishing the result in a
fully Bayesian fashion. We start with a key observation.

Key reformulation of the expected PoE. We ob-
serve that the expected PoE can be reformulated as
follows

Pn = E
[
P
(
Jn ̸= i∗(θ) | θ

)]
= E

[
P
(
Jn ̸= i∗(θ) | Hn

)]
.

This swap of measures means that to bound Pn, we no
longer bound the probability of

Jn = argmax
i∈[K]

E [r(i; θ) |Hn] ̸= argmax
i∈[K]

r(i; θ) = i∗(θ)

for any fixed θ. Instead, we only need to bound that
probability when θ is drawn from the posterior distri-
bution. Precisely, we bound the probability that the
arm i maximizing the posterior mean E [r(i; θ) | Hn]
differs from the arm i maximizing the posterior sample
r(i; θ) | Hn. This is achieved by first noticing that Pn

can be rewritten as (see proof in Appendix C.2)

Pn =
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] .

The rest of the proof consists in bounding the above
conditional probabilities for distinct i and j, and this
depends on the setting (MAB, linear or hierarchi-
cal). Roughly speaking, this is achieved as follows.
P (i∗(θ) = i | Hn, Jn = j) is the probability that arm i
maximizes the posterior sample r(·; θ), given that arm j
maximizes the posterior mean E [r(·; θ) | Hn]. We show
that this probability decays exponentially with the
squared difference (E [r(i; θ) |Hn] − E [r(j; θ) |Hn])

2.
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Taking the expectation of this term under the his-
tory Hn gives the desired O(1/

√
n) rate. This proof

introduces a novel perspective for Bayesian BAI, distin-
guished by its tighter prior-dependent bounds on the
expected PoE and ease of extension to more complex
settings like linear and hierarchical bandits. However,
its application to adaptive algorithms could be chal-
lenging, particularly due to the complexity of taking
expectations under the history Hn in that case. Also,
extending this proof to non-Gaussian distributions is
an interesting direction for future work, since in general
the posterior variances depend on sample observations.

Connections with Bayesian Decision Theory.
Note that the ‘key reformulation’ above is inspired
from a classical result in Bayesian Decision Theory
(Robert et al., 2007) that we exploit in a different man-
ner to analyse the Bayes risk of our (non-optimal but
computable) decision rule.

6 EXPERIMENTS

In all experiments, we set the observation noise to
σ = 1 and run algorithms 104 times. We display the
expected PoE along with its (narrow) standard error.
Additional experiments and details are provided in Ap-
pendix D. We consider four allocations for PI-BAI (dis-
cussed in Section 3): PI-BAI(Uni) (uniform weights),
PI-BAI(Opt) (optimized weights), PI-BAI(G-opt) (G-
optimal design) and PI-BAI(TS) (warmed-up with
Thompson Sampling) with warm-up length nw = K.
The tuning of nw and the choice of the warm-up policy
are discussed in Appendix D.7. The code is available
in this Github repository.

MAB. We set K = 10, µ0,i ∼ U([0, 1]) and σ0,i

are evenly spaced between 0.1 and 0.5. We compare
PI-BAI to Bayesian methods: top-two Thompson sam-
pling (TTTS5) (Jourdan et al., 2022; Russo, 2016) and
BayesElim (Atsidakou et al., 2022), and to frequentist
ones: Successive Rejects (SR) (Audibert et al., 2010)
and Sequential Halving (SH) (Karnin et al., 2013).

Linear bandit. We set d = 4, K = 30, µ0,i ∼ U([0, 1])
and Σ0 = diag(σ2

0,i)i∈[K], with σ0,i are evenly spaced
between 0.1 and 0.5. We compare our methods with two
algorithms designed for linear bandits: BayesGap (Hoff-
man et al., 2014) and GSE (Azizi et al., 2021). These
represent the current (tractable6) state-of-the-art ap-
proaches, leveraging G-optimal design for successive
elimination. We did not include other methods that
use the same elimination approach but have lower per-
formance in these settings (Alieva et al., 2021; Yang

5TTTS does not come with theoretical guarantees in the
fixed-budget setting.

6Katz-Samuels et al. (2020) has an algorithm with tighter
bounds but it is not tractable.

and Tan, 2022).

Hierarchical bandit. We set K = 60 and L = 10,
with mixing weights bi sampled uniformly in [0, 1] and
normalized to sum to 1. We set νi ∼ U([−1, 1]), and
Σ and Σ0 are diagonal with entries evenly spaced in
[0.12, 0.52]. The MAB frequentist baselines do not re-
quire priors, while the Bayesian ones need a Gaussian
MAB prior (5) since they are not suitable for a hier-
archical prior. To obtain such a Gaussian MAB prior,
we marginalize the effect parameters in (9). Also, al-
though there is a connection to linear bandits, we do
not include those baselines as they do not perform well
due to their inefficient representation of the structure,
resulting in a high-dimensional (K + L) linear model.

Results on synthetic data (first three columns of
Figure 2a). Overall, variants of PI-BAI outperform
the baselines. The best variant depends on the specific
setting, but PI-BAI(G-opt) is the best overall, closely
followed by PI-BAI(Opt). In hierarchical experiments,
PI-BAI(TS) exceeds all baselines, highlighting its ef-
fectiveness in capturing the underlying structure. We
emphasize that all Bayesian baselines in our experi-
ments (e.g., BayesElim and TTTS) are implemented
using the same informative prior. Overall, these re-
sults reaffirm that leveraging prior information is a
powerful and practical tool to scale BAI to cases with
a large number of arms and limited data. Additional
experiments in various settings are in Appendix D.2.

MovieLens (fourth column of Figure 2a). We also
consider the real-world MovieLens dataset (Lam and
Herlocker, 2016), which contains 1 million ratings from
6,040 users for 3,883 movies, forming a sparse rating
matrix M of size 6, 040×3, 883. To learn a suitable prior
for our algorithm, we complete M using alternating
least squares with rank d = 5 (low-rank factorization),
resulting in the decomposition M = U⊤V , where rows
Ui and Vj represent user i and movie j, respectively.
We then construct a linear Gaussian prior (Section 4.2)
by setting the mean µ0 = 1

3883

∑
j∈[3883] Vj and the

covariance Σ0 = diag(v), where v ∈ Rd is the empirical
variance of Vj for j ∈ [3883] along each dimension.
This prior is fixed across all MovieLens experiments
and does not depend on the rewards generated by the
bandit instance, resulting in a prior that is not data-
dependent. We run 104 simulations with K = 100
randomly subsampled movies. In this experiment, the
bandit instances are not sampled from a Gaussian prior,
yet our algorithm employs a learned Gaussian prior,
highlighting the robustness of our method to prior
misspecification. Despite this mismatch, PI-BAI with
this prior performs very well, as seen in the fourth
column of Figure 2a.

Online learning of priors (Figure 2b). We con-

https://github.com/nguyenicolas/Prior_Dependent_Allocations_BAI.git
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(a) Comparison of PI-BAI instantiated with different allocation weights to the baselines BayesElim, TTTS, SR, SH in
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Figure 2: Average PoE with varying n: comparison to baselines and impact of prior misspecification.

sider the same MAB setting as before with K = 10,
µ0,i ∼ U([0, 1]), and σ0,i evenly spaced in [0.1, 0.5]. We
compare three variants of PI-BAI: First, PI-BAI using
the correct prior mean µ0,i. Second, PI-BAI with a
misspecified prior µ̃0 = µ0 + 0.5ϵ where ϵ ∼ N (0, 1).
Third, PI-BAI that learns the prior online through the
hierarchical model with bi = ei ∈ RK , νi ∼ U([0, 1]),
and Σ = IK , as described in the last paragraph of Sec-
tion 4.4. This comparison is conducted when PI-BAI
variants are instantiated with either Uniform, Opti-
mized, G-optimal or TS allocation weights. As ex-
pected, prior misspecification affects PI-BAI’s perfor-
mance, but this effect diminishes as the budget n grows,
validating our theory. Additionally, PI-BAI in the hi-
erarchical model effectively learns the correct prior µ0,
with performance converging to that of PI-BAI with
the correct prior µ0. Finally, PI-BAI with theoretically
grounded allocations (Uniform, Optimized, G-optimal)
is more robust to prior misspecification than PI-BAI
with TS warm-up, likely because the misspecified prior
is used twice: by the warm-up policy TS and by PI-BAI.

7 CONCLUSION

We revisit the Bayesian fixed-budget BAI for PoE
minimization and propose a simple yet effective algo-
rithm for multi-armed, linear, and hierarchical bandits.

Our novel proof technique provides a generic, prior-
dependent upper bound on the expected PoE that is
tighter than existing bounds for MAB. It presents the
first bound on the expected PoE for linear and hierarchi-
cal bandits. Finally, we address prior misspecification
through both theoretical and empirical analysis. Our
work illuminates the trade-off between adaptivity and
generality in BAI algorithm design and opens several
avenues for future research; the competitiveness of this
non-adaptive algorithm with elimination schemes is of
broader interest, especially as it matches known lower
bounds. Theoretically, it would be valuable to explore
prior-dependent lower bounds beyond the simple K = 2
case.
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ORGANIZATION OF THE APPENDIX

The supplementary material is organized as follows. In Appendix A, we mention additional existing works relevant
to our work, and discuss in depth the differences between our work and them. In Appendix B, we provide
additional general additional remarks. In Appendix C, we give complete statements and proofs of our theoretical
results. In Appendix D, we supply additional numerical experiments.

A EXTENDED RELATED WORK

Hierarchical Bayesian bandits. Bayesian bandits algorithms under hierarchical models have been heavily
studied in recent years (Aouali, 2024; Aouali et al., 2023; Basu et al., 2021; Hong et al., 2020, 2022a,b; Kveton
et al., 2021; Nguyen and Vernade, 2023; Peleg et al., 2022). All the aforementioned papers propose methods to
explore efficiently in hierarchical bandit environments to minimize the (Bayesian) regret. Roughly speaking, the
idea of all hierarchical Bayesian bandits is to take advantage of the correlations between arms (learned trough the
posterior covariance) to have more information of the arms that are not pulled at each round. Beyond regret
minimization, Bayesian structured models also found success in simple regret minimization (Azizi et al., 2023)
and off-policy learning in contextual bandits (Aouali et al., 2024; Hong et al., 2023).

Bayesian simple regret minimization and differences with Komiyama et al. (2023). Bayesian simple
regret (SR) minimization have been studied in Komiyama et al. (2023) for Bernoulli bandits. However, we would
like to emphasize that our work is very different from theirs. First, SR and PoE may yield to different rate in the
Bayesian setting (Komiyama et al., 2023). While this observation is not true in the frequentist setting (Audibert
et al., 2010), Komiyama et al. (2023) proved an asymptotic O(1/n) lower bound on the Bayesian SR, while
Atsidakou et al. (2022) proved a O(1/

√
n) lower bound on the PoE. This is because the relationship between SR

and PoE is not clear as in the frequentist setting. In fact, we have for a fixed environment θ ∈ RK ,

SR(θ) ≤ ∆max(θ)P(Jn ̸= i∗(θ) | θ) ,

where ∆max(θ) = maxi∈[K] θi − mini∈[K] θi. Integrating with respect to the prior distribution, we bound the
expected simple regret as

E [SR(θ)] ≤ E [∆max(θ)P(Jn ̸= i∗(θ) | θ)] ,

where the right hand side term involves two non-independent quantities. Note that upper bounding ∆max by a
pure constant (e.g. with high probability for unbounded support reward distributions) would lead to a suboptimal
rate of O(1/

√
n) for the simple regret.

The second difference between these two works is that ours consider the finite-time regime, while theirs derive
asymptotic upper and lower bounds. We strongly believe that finite-time guarantees are more interesting in our
setting because in practical scenarios, having access to an informative prior is beneficial in the data-poor regime
in order to identify the best arm. Moreover, despite deriving Bayesian guarantees, their algorithm is frequentist
in the sense that it does not use the prior distribution.

Finally, their work focus on Bernoulli distributions, while our work focus on Gaussian distributions. We believe
that it is not straightforward to extend their method and analysis to distributions with unbounded support as
Gaussians.

Differences on the prior assumption with Atsidakou et al. (2022). This latter work considers the
K-arms Gaussian setting (5) and restricts the prior to have equal prior variances σ2

0,i = σ2
0 for all i ∈ [K]. Since

their algorithm (BayesElim) is elimination-based and operates in R rounds, at each elimination round r ∈ [R],
they perform uniform allocation, ni =

n
KR . Coupling this with the assumption of prior variance yields to equal

posterior covariance, σ2
n,i = σ2

n for all i ∈ [K], i.e. arms have the same posterior uncertainty at the end of each
round. This observation allows them to use frequentist-based analysis as in Karnin et al. (2013). Note that
similarly as in frequentist analysis of Karnin et al. (2013), their analysis imposes to discard all previously collected
observations at the end of each round, impacting the empirical performances of their method. We believe that it
is not possible to adapt their analysis to heterogeneous prior variances, where each arm would have a different
posterior uncertainty at the end of each round.
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We now compare the upper bound of BayesElim in the setting where their results are valid, that is, when the
prior variances are homogeneous, σ2

0,i = σ2
0 . Their bound and ours read

PBayesElim
n ≤

∑
i,j∈[K]
i ̸=j

log2(K) e
−

(µ0,i−µ0,j)
2

4σ2
0√

1+
nσ2

0
Klog2(K)σ2

, and PPI-BAI
n ≤

∑
i,j∈[K]
i̸=j

exp
(
−

(µ0,i−µ0,j)
2

4σ2
0

)
√

1+
nσ2

0
Kσ2

.

By omitting elimination phases, we gain roughly a factor log
3/2
2 (K) over the bound of Atsidakou et al. (2022)

(highlighted in blue). This additional factor can be significant when bounding a probability (log3/22 (K) ≈ 6 for
K = 10). This difference makes our bound smaller even in their setting with homogeneous prior variances and
choosing uniform allocation weights for PI-BAI.

B ADDITIONAL DISCUSSIONS

B.1 Motivating Practical Examples for Hierarchical Bandits

We discuss motivating examples for using hierarchical models in pure exploration settings.

Hyper-parameter tuning. Here, the goal is to find the best configuration for a neural network using n epochs
(Li et al., 2017). A configuration i is represented by a scalar θi ∈ R which quantifies the expected performance of
a neural network with such configuration. Again, it is intuitive to learn all θi individually. Roughly speaking,
this means running each configuration for ⌊ n

K ⌋ epochs and selecting the one with the highest performance. This
is statistically inefficient since the number of configurations can be combinatorially large. Fortunately, we can
leverage the fact that configurations often share the values of many hyper-parameters. Precisely, a configuration is
a combination of multiple hyper-parameters, each set to a specific value. Then we represent each hyper-parameter
ℓ ∈ [L] by a scalar parameter µℓ ∈ R, and the configuration parameter θi is a mixture of its hyper-parameters
µℓ weighted by their values. That is, θi =

∑
ℓ∈[L] bi,ℓµℓ + ϵi, where bi,ℓ is the value of hyper-parameter ℓ in

configuration i and ϵi is a random noise to incorporate uncertainty due to model misspecification.

Drug design. In clinical trials, K drugs are administrated to n subjects, with the goal of finding the optimal
drug design. Each drug is parameterized by its expected efficiency θi ∈ R. As in the previous example, it is
intuitive to learn each θi individually by assigning a drug to ⌈ n

K ⌉ subjects. However, this is inefficient when K is
large. We leverage the idea that drugs often share the same components: each drug parameter θi is a combination
of component parameters µl, each accounting for a specific dosage. More precisely, the parameter of drug i can
be modeled as θi =

∑
l∈[L] bi,lµl + ϵi where ϵi accounts for uncertainty due to model misspecification. Similarly

to the hyper-parameter tuning example, this models correlations between drugs and it can be leveraged for more
efficient use of the whole budget of n epochs.

B.2 Additional Remarks on Hierarchical Models

The two-level prior we consider has a shared latent parameter µ = (µℓ)ℓ∈[L] ∈ RL representing L effects impacting
each of the K arm means:

µ ∼ Q

θi ∼ P0,i(·;µ) ∀i ∈ [K]

Yt | µ, θ,At ∼ P (·; θAt
) ∀t ∈ [n] ,

where Q is the latent prior on µ ∈ RL.

In the Gaussian setting (9), the maximum likelihood estimate of the reward mean of action i, Bn,i/ni, contributes
to (15) proportionally to its precision ni/(niσ

2
0,i + σ2) and is weighted by its mixing weight bi. (16) is a standard

Gaussian posterior, and (17) takes into account the information of the conditional posterior. Finally, (17) takes
into account the arm correlation through its dependence on σ̂n,i and µ̂n,i. While the properties of conjugate
priors are useful for inference, other models could be considered with approximate inference techniques (Clavier
et al., 2023; Phan et al., 2019).

Link with linear bandit (cont.). The slightly unusual characteristic of (10) is that the prior distribution has
correlated components. This can be addressed by the whitening trick (Bishop, 2006), defining µ̃ = Σ̄−1/2µ̄ and
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b̃i = Σ̄1/2b̄i, giving

µ̃ ∼ N (Σ̄−1/2ν̄, IL+K)

Yt | µ̃, At ∼ N (b̃⊤At
µ̃, σ2) ∀t ∈ [n] , (11)

where IL+K is the (L+K)-dimensional identity matrix. Then, (11) corresponds to a linear bandit model with
K arms and d = K + L features. However, this model comes with some limitations. First, when computing
posteriors under (11), the time and space complexities are O((K + L)3) and O((K + L)2) respectively, compared
to the O(K + L3) and O(K + L2) for our model (17). The feature dimension d = K + L can be reduced
to d = K through the following QR decomposition: B̃ =

(
b̃1, . . . , b̃K

)
∈ R(K+L)×K can be expressed as

B̃ = V R, where V ∈ R(K+L)×K is an orthogonal matrix and R ∈ RK×K . This leads to the following model
µ̌ ∼ N (V ⊤Σ̄−1/2ν̄, V ⊤V ) and Yt | µ̌, At ∼ N (R⊤

At
µ̌, σ2), yet the feature dimension d remains at the order of K,

and computational efficiency is not improved with respect to K.

From hierarchical bandit to MAB. Marginilizing the hyper-prior in (9) leads to a MAB model,

θi ∼ N (b⊤i ν, σ
2
0,i + b⊤i Σbi) ∀i ∈ [K]

Yt | µ, θ,At ∼ N (θAt , σ
2) ∀t ∈ [n] . (12)

In this marginalized model, the agent does not know µ and he doesn’t want to model it. Therefore, only θ is
learned. The marginalized prior variance σ2

0,i + b⊤i Σbi accounts for the uncertainty of the not-modeled effects.
From (6), the corresponding posterior covariance of an arm i ∈ [K] is

σ̂−2
n,i =

1

σ2
0,i + bTi Σbi

+
ωin

σ2
.

We illustrate the benefit of using hierarchical models over MAB models with a toy experiment. In the first setting,
we uniformly draw a vector u ∈ [0, 1] and set σ0 = 0.1u and Σ = 2IL. In the second setting, we set σ0 = u and
Σ = 10−3IL. In both settings, we consider K = 50 arms, and L = 10 effects. Each νi and bi are sampled from
[−1, 1], and the allocation vector is set to uniform allocation, ωuni

i = 1
K for any i ∈ [K]. Figure 3 shows the

average posterior covariance 1
K

∑
i∈[K] σ

2
n,i across all arms for both the (marginalized) standard MAB model (12)

in blue and the hierarchical model (9) in red. The results show that the benefits of using hierarchical models are
more pronounced when the initial uncertainty of the effects Σ is greater than the initial uncertainty of the mean
rewards (σ2

0,i)i∈[K].
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Figure 3: Average posterior covariance across all arms for standard MAB and hierarchical model for two settings.

B.3 Beyond Gaussian Distributions

Beyond linear models. The standard linear model (7) can be generalized beyond linear mean rewards. The
Generalized Linear Bandit (GLB) model with prior P0 writes (Filippi et al., 2010; Kveton et al., 2020)

θ ∼ P0 (13)
Yt | θ,At ∼ P (.; θ,At) ∀t ∈ [n] ,
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where the reward distribution P (.; θ,At) belongs to some exponential family with mean reward r(At; θ) = ϕ(θ⊤xAt).
ϕ is called the link function. The log-likelihood of such reward distribution can be written as

Ln(θ) =

n∑
t=1

log P(Yt; θ,Ai) =

n∑
t=1

Ytθ
⊤xAt

−A(θ⊤xAt
) + h(Yt) ,

where A is a log-partition function and h another function. Importantly, (13) encompasses the logistic bandit
model with the particular link function ϕ(z) = 1

1+e−z .

The main challenge of (13) is that closed-form posterior generally does not exist. One method is to approximate
the posterior distribution of θ given Hn with Laplace approximation, that is, P(θ | Hn) is approximated with a
multivariate Gaussian distribution with mean θ̂MAP and covariance Σ̂Lap,

θ̂MAP = argmax
θ

Ln(θ)P0(θ) , Σ̂−1
Lap =

n∑
t=1

ϕ̇(θ̂⊤MAPxAt
)xAt

x⊤
At

,

where ϕ is assumed continuously differentiable and increasing. Note that θ̂MAP can be computed efficiently by
iteratively reweighted least squares (Wolke and Schwetlick, 1988).

Logistic Bandit. In the particular case where the reward distribution is Bernoulli, the model writes

θ ∼ N (µ0,Σ0)

Yt | θ,At ∼ B(ϕ(θ⊤xAt
)) ∀t ∈ [n] , (14)

where ϕ is the logistic function. Then, using a result from Spiegelhalter and Lauritzen (1990), the mean posterior
reward can be approximated as

Eθ∼N (θ̂MAP,Σ̂Lap)

[
ϕ(θ⊤xi)

]
≈ ϕ(θ̂⊤MAPxi)√

1 + π
8 ∥xi∥Σ̂Lap

,

and we set the decision after n rounds as Jn = argmaxi∈[K]
ϕ(θ̂⊤

MAPxi)√
1+π

8 ∥xi∥Σ̂Lap

.

Proving an upper bound on the expected PoE of this algorithm is challenging. Particularly, upper bounding the
expectation with respect to Hn is hard because one needs to show that θ̂MAP concentrates in norm towards its
expectation EHn

[
θ̂MAP

]
. We leave this study for future work. However, we provide numerical experiments for

this setting in Appendix D.4.

B.4 Differences Between Optimized and Warmed-up Weights.

To illustrate the differences between optimized weights (PI-BAI(ωopt)) and learned weights with Thompson
sampling as a warm-up policy (PI-BAI(ωTS)), we return to our motivating example in Section 4.1, where K = 3,
µ0 = (1, 1.9, 2) and σ0,i = 0.3 for all i ∈ [3]. We set the budget as n = 100. We repeat 104 times the following
experiment: we sample a bandit instance from the prior and run Thompson sampling for nw = 20 rounds, then
construct the allocation weights ωTS. Computing the weights ωopt by numerical optimization of (3) is done once
at the beginning of these experiments.

Figure 4 shows an empirical comparison of the weights on 2 problem instances and on average over 104 runs. We
see that, in this example, both allocation strategies assign high weights to arms 2 and 3, while allocating a small
weight to arm 1. This is because, based on the prior information, arm 1 is highly unlikely to be the optimal arm.
Then, the primary objective revolves around selecting the optimal arm among arms 2 and 3. Also, while the
allocation weights ωts

i vary with each bandit instance, their average values in all instances are similar to those of
ωopt
i . Thus PI-BAI(ωTS) is more adaptive than PI-BAI(ωopt), while both have similar average behavior.

C MISSING PROOFS

In this section, we give complete proof of our theoretical results. In Appendix C.1, we give proofs for the Bayesian
posterior derivations and we provide technical results. Then we provide the complete proofs of our results for
MAB (Appendix C.2), linear bandits (Appendix C.3) and hierarchical bandits (Appendix C.4).
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C.1 Technical Proofs and Posteriors Derivations

Bayesian computations for hierarchical model. We detail the computations of posterior distribution
computations of the hierarchical Gaussian model,

µ ∼ N (ν,Σ)

θi ∼ N (b⊤i µ, σ
2
0,i) ∀i ∈ [K]

Yt | µ, θ,At ∼ N (θAt
, σ2) ∀t ∈ [n] ,

where we recall that Bn,i =
∑

t∈Ti
Yt and Ti = {t ∈ [n], At = i}.

Lemma C.1 (Gaussian posterior update). For any ρ ∈ R, µ ∈ RL, b ∈ RL and σ, σ0 > 0,m ∈ N, we have∫
ρ

∏
t∈[m]

N
(
Yt; ρ, σ

2
)
N
(
ρ; b⊤µ, σ2

0

)
dρ ∝ N (µ;µm,Σm) ,

with

Σm =
m

mσ2
0 + σ2

bb⊤; µm = Σ−1
m

∑
t∈[m] Yt

mσ2
0 + σ2

b .

Proof of Lemma C.1. By keeping only terms that depend on µ,

f(µ) =

∫
ρ

∏
t∈[m]

N
(
Yt; ρ, σ

2
)
N
(
ρ; b⊤µ, σ2

0

)
dρ

∝
∫
ρ

exp

− 1

2σ2

∑
t∈[m]

(Yt − ρ)2 − 1

2σ2
0

(ρ− b⊤µ)2

dρ

∝
∫
ρ

exp

{
−1

2
ρ2
(

1

σ2
0

+
m

σ2

)
− 2ρ

(∑
t∈[m]

σ2
+

b⊤µ

σ2
0

)}
dρ exp

{
− 1

2σ2
0

µT bb⊤µ

}

∝ exp

1

2

 1

σ2

∑
t∈[m]

Yt +
b⊤µ

σ2
0

2

σ2
0σ

2

σ2 +mσ2
0

− 1

2σ2
0

µT bb⊤µ


∝ exp

{∑
t∈[m] Ytb

⊤µ

σ2 +mσ2
0

+
σ2

2(σ2 +mσ2
0)
µ⊤bb⊤µ− 1

σ2
0

bb⊤

}

∝ exp

{
−1

2

(
µ⊤ m

σ2 +mσ2
0

bb⊤µ− 2µ⊤

∑
t∈[m] Yt

σ2 +mσ2
0

b

)}
∝ N (µ;µm,Σm) .
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Lemma C.2 (Joint effect posterior). For any n ∈ [N ], the joint effect posterior is a multivariate Gaussian
Qn(µ) = N (µ̆, Σ̆n), where

Σ̆−1
n = Σ−1 +

∑
i∈[K]

ni

niσ2
0,i + σ2

bib
⊤
i , µ̆n = Σ̆n

(
Σ−1ν +

∑
i∈[K]

Bn,i

niσ2
0,i + σ2

bi

)
. (15)

Proof of Lemma C.2. The joint effect posterior can be written as

Qn(µ) ∝
∫
θ

Lθ (YA1
, ..., YAn

)P0(θ | µ)dθQ(µ)

=
∏

i∈[K]

∫
θi

∏
t∈Ti

N
(
Yt; θi, σ

2
)
N
(
θi; b

⊤
i µ, σ

2
0,i

)
dθiN (µ; ν,Σ) .

Applying Lemma C.1 gives∫
θi

∏
t∈Ti

N
(
Yt; θi, σ

2
)
N
(
θi; b

⊤
i µ, σ

2
0,i

)
dθi ∝ N

(
µ; µ̄n,i, Σ̄n,i

)
,

with

Σ̆−1
n,i =

ni

σ2
0,ini + σ2

bib
⊤
i , µ̆n,i = Σ̆n,ibi

ni

σ2
0,ini + σ2

Bn,i

ni
.

Therefore, the joint effect posterior is a product of Gaussian distributions,

Qn(µ) ∝
∏

i∈[K]

N
(
µ; µ̆n,i, Σ̆n,i

)
N (µ; ν,Σ) ∝ N

(
µ; µ̆n, Σ̆n

)
,

where

Σ̆n = Σ−1 +
∑
i∈[K]

Σ̆n,i = Σ−1 +
∑
i∈[K]

ni

σ2
0,ini + σ2

bib
⊤
i

µ̆n = Σ̆−1
n

Σ−1ν +
∑
i∈[K]

Σ̆−1
n,iµ̆n,i

 = Σ̆−1
n

Σ−1ν +
∑
i∈[K]

Bn,i

niσ2
0,i + σ2

bi

 .

Lemma C.3 (Conditional arm posteriors). For any n ∈ [n] and any arm i ∈ [K], the conditional posterior
distribution of arm i is a Gaussian distribution Pn,i(θi | µ) = N

(
µ̃n,i, σ̃

2
n,i

)
, where

σ̃−2
n,i =

1

σ2
0,i

+
ni

σ2
, µ̃n,i = σ̃2

n,i

(
µ⊤bi
σ2
0,i

+
Bn,i

σ2

)
. (16)

Proof of Lemma C.3. The conditional posterior of arm i can be written as

Pn,i(θi | µ) ∝ Lθi(YA1 , ..., YAn)P0,i(θi | µ)

∝
∏
t∈Ti

N
(
Yt; θi, σ

2
)
N
(
θi; b

T
i µ, σ

2
0,i

)
∝ exp

{
− 1

2σ2

∑
t∈Ti

(Yt − θi)
2 − 1

2σ2
0,i

(θi − b⊤i µ)
2

}

∝ exp

{
− 1

2σ2

∑
t∈Ti

(
−2Ytθi + θ2i

)
− 1

2σ2
0,i

(
θ2i − 2θib

⊤
i µ
)}

∝ exp

{
−1

2

(
θ2i

(
ni

σ2
+

1

σ2
0,i

)
− 2θi

(
1

σ2

∑
t∈Ti

Yt +
1

σ2
0,i

b⊤i µ

))}
∝ N

(
θi; µ̃n,i, σ̃

2
n,i

)



Prior-Dependent Allocations for Bayesian Fixed-Budget Best-Arm Identification in Structured Bandits

Lemma C.4 (Marginal arm posterior). For any n ∈ [n] and any arm i ∈ [K], the marginal posterior distribution
of arm i is a Gaussian distribution P(θi | Hn) = N

(
µ̂n,i, σ̂

2
n,i

)
, where

σ̂2
n,i = σ̃2

n,i +
σ̃4
n,i

σ4
0,i

b⊤i Σ̆nbi, µ̂n,i = σ̃2
n,i

( µ̆⊤
n bi
σ2
0,i

+
Bn,i

σ2
i

)
. (17)

Proof of Lemma C.4. The marginal distribution of arm i can be written as∫
µ

Pn,i(θi | µ)Qn(µ)dµ =

∫
µ

N
(
θi; µ̃n,i, σ̃

2
n,i

)
N
(
µ; µ̆n, Σ̆n

)
dµ

∝
∫
µ

N

(
θi; σ̃

2
n,i

(
µ⊤bi
σ2
0,i

+
Bn,i

σ2

)
, σ̃2

n,i

)
N
(
µ; µ̆n, Σ̆n

)
dµ .

The line above is a convolution of Gaussian measures, and can be written as (Bishop, 2006),

∫
µ

Pn,i(θi | µ)Qn(µ)dµ ∝ N

(
θi; σ̃

2
n,i

(
µ̆⊤
n bi
σ2
0,i

+
Bn,i

σ2
i

)
, σ̃2

n,i +
σ̃2
n,i

σ2
0,i

b⊤i Σ̆n

σ̃2
n,i

σ2
0,i

bi

)
dµ

= N
(
θi; µ̂n,i, σ̂

2
n,i

)
.

Lemma C.5 (Technical lemma). Let a > 0 and X ∼ N (µ, σ2). Then EX

[
e−

X2

2a2

]
= 1√

1+σ2

a2

e
− µ2

2(a2+σ2) .

C.2 Proofs for Multi-armed Bandits

From now, we consider that ⌊ωkn⌋ = ωkn ∈ N for sake of simplicity.

Theorem C.6 (Complete statement of Theorem 4.1). For all ω ∈ ∆+
K , the expected PoE of PI-BAI(ω) under

the MAB problem (5) is upper bounded as

Pn ≤
∑

i,j∈[K]
i ̸=j

e
−

(µ0,i−µ0,j)
2

2(σ2
0,i

+σ2
0,j

)√
1 + nϕi,j(ω)

, where ϕi,j(ω) =
σ4
0,iωi

(
σ2

n + ωjσ
2
0,j

)
+ σ4

0,jωj

(
σ2

n + ωiσ
2
0,i

)
σ2σ2

0,i

(
σ2

n + ωjσ2
0,j

)
+ σ2σ2

0,j

(
σ2

n + ωiσ2
0,i

) . (18)

Remark C.7. When σ2
0,i = σ2

0,j , limn→+∞ ϕi,j = limn→∞
σ4
0,iωi

(
σ2

n +ωjσ
2
0,j

)
+σ4

0,jωj

(
σ2

n +ωiσ
2
0,i

)
σ2σ2

0,i

(
σ2

n +ωjσ2
0,j

)
+σ2σ2

0,j

(
σ2

n +ωiσ2
0,i

) =
2σ2

0

σ2

ωiωj

ωi+ωj
= O(1).

Proof of Theorem 4.1 We first write Pn as a double sum over all possible distinct arms,

E
[
P
(
Jn ̸= i∗(θ) | Hn

)]
= E [1{Jn ̸= i∗(θ)}]

= E

E
 K∑

i=1

K∑
j=1

1{i ̸= j}1{i∗(θ) = i}1{Jn = j} | Hn


=

∑
i,j∈[K]
i ̸=j

E [E [1{i∗(θ) = i}1{Jn = j} | Hn]]

=
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i ∩ Jn = j | Hn)]

Since Jn : Hn → [K], P(Jn = j | Hn) = 1{Jn = j}. For the conditional probability of i∗(θ) = i given the event
Jn = j to be well defined, we want to make sure to condition on an event with non-zero probability. Considering
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both events {Jn = j} or {Jn ̸= j} under Hn,∑
i,j∈[K]
i ̸=j

E [P (i∗(θ) = i ∩ Jn = j | Hn)] =
∑

i,j∈[K]
i̸=j

E [P (i∗(θ) = i ∩ Jn = j | Hn) (1{Jn = j}+ 1{Jn ̸= j})]

=
∑

i,j∈[K]
i̸=j

E [P (i∗(θ) = i | Jn = j,Hn) | Jn = j]P(Jn = j) .

=
∑

i,j∈[K]
i̸=j

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] ,

where the second equality holds by tower rule conditionally on Hn, and the last equation holds because Jn is
deterministic conditionally on Hn. Overall, this gives

Pn =
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] .

By definition of i∗(θ) in the MAB setting and applying Hoeffding inequality for sub-Gaussian random variables,

P

(
argmax
k∈[K]

θk = i | Hn, Jn = j

)
≤ P (θi ≥ θj | Hn, Jn = j)

= P ((θi − θj)− (µ̂n,i − µ̂n,j) ≥ −(µ̂n,i − µ̂n,j) | Hn, Jn = j)

≤ exp

(
− (µ̂n,i − µ̂n,j)

2

2(σ̂2
n,i + σ̂2

n,j)

)
. (19)

Therefore,

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] ≤ E

[
exp

(
− (µ̂n,i − µ̂n,j)

2

2(σ̂2
n,i + σ̂2

n,j)

)]
(20)

We now want to compute this above expectation with respect to Hn.

First, we remark that because the scheduling of arms (A1, ..., An) is deterministic, the law of Hn =
(A1, YA1

, ..., An, YAn
) is the law of (YA1

, ..., YAn
). Denoting πHn

the marginal distribution of Hn,

πHn
(Hn) = πHn

(YA1
, ..., YAn

) =

∫
θ

Lθ(YA1
, ...YAn

)P0(θ)dθ ,

where Lθ(YA1
, ...YAn

) denotes the likelihood of (YA1
, ...YAn

) given parameter θ and P0(θ) =
∏

i∈[K] P0,i(θi) since
each mean reward θi is drawn independently from P0,i in the MAB setting. Since rewards given parameter θ are
independent and identically distributed,

πHn (Hn) =

∫
θ

∏
i∈[K]

Lθi

(
(Yt)t∈Ti

)
P0,i(θi)dθi

=

∫
θ

∏
i∈[K]

N
(
(Yt)t∈Ti

; θi1ωin, σ
2Iωin

)
N
(
θi;µ0,i, σ

2
0,i

)
dθi , (21)

where 1q denotes the vector of size q whose all components are 1s.

(21) is a convolution of Gaussians and can be computed easily (Bishop, 2006),

N
(
(Yt)t∈Ti

; θi1ωin, σ
2Iωin

)
N
(
θi;µ0,i, σ

2
0,i

)
= N

(
(Yt)t∈Ai

;µ0,i1ωin, σ
2Iωin + σ2

0,i1ωin1
⊤
ωin

)
.

The above covariance matrix exhibits σ2 + σ2
0,i on the diagonal and σ2

0,i out of diagonal.
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We are now ready to compute some useful statistics : for any i ∈ [K],

E [µ̂n,i] = E

[
σ2

σ2 + σ2
0,iωin

µ0,i +
σ2
0,i

σ2 + σ2
0,iωin

∑
t∈Ti

Yt

]
= µ0,i (22)

V (µ̂n,i) =
σ4
0,i(

σ2 + σ2
0,iωin

)2V
(∑

t∈Ti

Yt

)
=

σ4
0,i(

σ2 + σ2
0,iωin

)ωin (23)

E

[
1

ωin

∑
t∈Ti

Yt

]
= µ0,i (24)

V

(
1

ωin

∑
t∈Ti

Yt

)
=

1

ω2
i n

2

(
ωin

(
σ2 + σ2

0,i

)
+
(
ω2
i n

2 − ωin
)
σ2
0,i

)
=

σ2

ωin
+ σ2

0,i (25)

Applying Lemma C.5 on (20) and simplifying terms gives

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] ≤ E

[
exp

(
− (µ̂n,i − µ̂n,j)

2

2(σ̂2
n,i + σ̂2

n,j)

)]
=

e
−

(µ0,i−µ0,j)
2

2(σ2
0,i

+σ2
0,j

)√
1 + nϕi,j

.

C.3 Proofs for Linear Bandits

Theorem C.8 (Complete statement of Theorem 4.2). Assume that xi ̸= xj for any i ̸= j. Then, for all ω ∈ ∆+
K ,

the expected PoE of PI-BAI using allocation ω under linear bandit problem (7) is upper bounded as

Pn ≤
∑

i,j∈[K]
i̸=j

1√
1 +

ci,j(ω)

∥xi−xj∥2
Σ̂n

e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ̂0 ,

where:

Cov(µ̂n) =
1

σ4
Σ̂n


∑
i∈[K]

(
ωin(σ

2 + x⊤
i Σ0xi)

)
xix

⊤
i︸ ︷︷ ︸

variance terms

+
∑
i∈[K]

∑
j∈[K]\{j}

x⊤
i Σ0xjωiωjn

2xix
⊤
j︸ ︷︷ ︸

covariance between arms

 Σ̂n

ci,j = ∥xi − xj∥2Cov(µ̂n)
. (26)

Proof of Theorem 4.2.

The proof for the linear model follows the same steps as the MAB model by rewriting Pn as

Pn =
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] .

By definition of i∗(θ) and Jn in the linear bandit setting,

P (i∗(θ) = i | Hn, Jn = j) = P
(
∀k ∈ [K], θ⊤xi ≥ θ⊤xk | Hn, Jn = j

)
≤ P

(
θ⊤xi ≥ θ⊤xj | Jn = j,Hn

)
≤ exp

(
−
∥µ̂n∥2(xi−xj)(xi−xj)⊤

2∥xi − xj∥2Σ̂n

)
,

where the last inequality follows from Hoeffding inequality for sub-Gaussian random variables. Taking the
expectation with respect to Hn,

E [P (i∗(θ) = i | Hn, Jn = j)1{Jn = j}] ≤ E

[
exp

(
−
∥µ̂n∥2(xi−xj)(xi−xj)⊤

2∥xi − xj∥2Σ̂n

)]
. (27)
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Then we remark that the expectation of µ̂n with respect to Hn is

E [µ̂n] = E

Σ̂n

Σ−1
0 µ0 +

1

σ2

∑
t∈[n]

YtxAt

 = Σ̂n

Σ−1
0 µ0 +

1

σ2
E

∑
t∈[n]

YtxAt

 ,

since the scheduling (A1, . . . An) is known beforehand. Now,

E

∑
t∈[n]

YtxAt

 =
∑
t∈[n]

E [Yt]xAt
=
∑
t∈[n]

µ⊤
0 xAt

xAt
,

where E [Yt] was obtained by marginalizing the likelihood over the prior distribution as in (21).

Rearranging the terms permits to conclude that E [µ̂n] = µ0. Then we can compute the expectation in (27) by
applying Lemma C.5, Sylvester identity, and some simplifications:

E

[
exp

(
−
∥µ̂n∥2(xi−xj)(xi−xj)⊤

2∥xi − xj∥2Σ̂n

)]
=

1√
1 +

∥xi−xj∥2
Cov(µ̂n)

∥xi−xj∥2
Σ̂n

e
− 1

2∥µ0∥2
Λij . (28)

where from Lemma C.5,

Λi,j = Cov(µ̂n)
−1 − Cov(µ̂n)

−1

(
Cov(µ̂n)

−1 +
(Ai −Aj)(Ai −Aj)

∥Ai −Aj∥2Σ̂n

)−1

Cov(µ̂n)
−1

= Cov(µ̂n)
−1 − Cov(µ̂n)

−1

(
Id +Cov(µ̂n)

(xi − xj)(xi − xj)

∥xi − xj∥2Σ̂n

)−1

=
(xi − xj)(xi − xj)

⊤

∥xi − xj∥2Σ̂n
+ ∥xi − xj∥2Cov(µ̂n)

.

The last equality follows from an application of Sherman-Morrison identity. Applying the law of total expectation,

Cov(θ) = E [Cov(θ | Hn)] + Cov(E [θ | Hn]) = Σ̂n +Cov(µ̂n) .

Therefore,

∥xi − xj∥2Σ̂n
+ ∥xi − xj∥2Cov(µ̂n)

= ∥xi − xj∥2Σ̂n+Cov(µ̂n)
= ∥xi − xj∥2Σ0

.

Plugging these into (28), we obtain

E [P (i∗(θ) = i | Hn, Jn = j)] ≤ e
−

∥µ0∥2
(xi−xj)(xi−xj)

⊤

2∥xi−xj∥2Σ̂0√
1 +

∥xi−xj∥2
Cov(µ̂n)

∥xi−xj∥2
Σ̂n

=
e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ̂0√
1 +

∥xi−xj∥2
Cov(µ̂n)

∥xi−xj∥2
Σ̂n

.

Computation of Cov(µ̂n).

By definition of Gaussian posteriors in linear bandit in (8),

Cov(µ̂n) = Cov

(
Σ̂n

(
Σ−1

0 µ0 +
1

σ2
Bn

))
= Σ̂nCov

(
Σ−1

0 µ0 +
1

σ2
Bn

)
Σ̂n =

1

σ4
Σ̂nCov(Bn)Σ̂n ,
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and

Cov(Bn) =
∑
t∈[n]

V(YtxAt
) +

∑
t∈[n]

∑
t′∈[n],t̸=t′

Cov(YtxAt
, Yt′xAt′ )

=
∑
t∈[n]

V(Yt)xAt
x⊤
At

+
∑
t∈[n]

∑
t′∈[n],t̸=t′

Cov(Yt, Yt′)xAt
x⊤
At′

=
∑

k∈[K]

ωknV(Yxk
)xkx

⊤
k +

∑
i,j∈[K]
i ̸=j

ωiωjn
2Cov(Yxi

, Yxj
)xix

⊤
j

=
∑

k∈[K]

ωkn(σ
2 + x⊤

k Σ0xk))xkx
⊤
k +

∑
i,j∈[K]
i ̸=j

ωiωjn
2(x⊤

i Σ0xj)xix
⊤
j .

Proof of Corollary 4.3.

We first prove a useful lemma that holds for Bayesian G-optimal design.
Lemma C.9. Let X a finite set such that |X | = K, ξ : X → [0, 1] a distribution on X so that

∑
x∈X ξ(x) =

1, Vn(ξ) =
∑

x∈X ξ(x)xx⊤ + σ2

n Σ−1
0 , Σ0 ∈ Rd×d a diagonal matrix, and f(ξ) = log det

(
Vn(ξ)

)
. If ξ∗ =

argminξ∈∆K
f(ξ), then maxx∈X ∥x∥2Vn(ξ)−1 ≤ d.

Proof of Lemma C.9. By concavity of ξ 7→ f(ξ), we have for any ξ that

0 ≥ ⟨∇f(ξ∗), ξ − ξ∗⟩ =
∑
x∈X

ξ(x)
[
∇f(ξ∗)

]
x
− ⟨ξ∗,∇f(ξ∗)⟩ ,

and since this holds for any pdf ξ, choosing ξ = δx′ for an arbitrary action x′ yields[
∇f(ξ∗)

]
x′ ≤ ⟨ξ∗,∇f(ξ∗)⟩ for any x′ ∈ X .

Since r.h.s. does not depend on x′,

max
x∈X

[
∇f(ξ∗)

]
x
≤ ⟨ξ∗,∇f(ξ∗)⟩ . (29)

By the property of the gradient of log-determinant,
[
∇f(ξ∗)

]
x
= ∥x∥Vn(ξ∗)−1 . Therefore, for any ξ,

⟨ξ,∇f(ξ)⟩ =
∑
x∈X

ξ(x)∥x∥2V −1(ξ)

=
∑
x∈X

ξ(x)x⊤Vn(ξ)
−1x

= Tr

(∑
x∈X

ξ(x)x⊤Vn(ξ)
−1x

)

= Tr

∑
x∈X

ξ(x)xx⊤

(∑
x′∈X

ξ(x′)x′x′⊤ +
σ2

n
Σ−1

0

)−1


= Tr

(
E

(
E +

σ2

n
Σ−1

0

)−1
)

where E =
∑
x∈X

ξ(x)xx⊤

= Tr

((
Id +

σ2

n
Σ−1

0 E−1

)−1
)

= Tr

(
Id −

σ2

n
Σ−1

0

(
Id +

σ2

n
E−1Σ−1

0

)−1

E−1

)
(Woodburry identity)

= Tr(Id)−
σ2

n
Tr

((
EΣ0 +

σ2

n
Id

)−1
)

≤ Tr(Id) = d .
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All putting together in (29) with ξ∗ = argminξ∈∆K
f(ξ) implies maxx∈X ∥x∥V (ξ∗)−1 ≤ d.

A direct implication of Lemma C.9 is that maxx∈X ∥x∥Σ̂n
≤ dσ2

n . Therefore,

Pn ≤
∑

i,j∈[K]
i ̸=j

e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ̂0√
1 +

ci,j
∥xi−xj∥2

Σ̂n

≤
∑

i,j∈[K]
i ̸=j

e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ̂0√
1 +

ci,j
2maxx∈X ∥x∥2

Σ̂n

≤
∑

i,j∈[K]
i ̸=j

e
−

(µ⊤
0 xi−µ⊤

0 xj)
2

2∥xi−xj∥2Σ̂0√
1 + n

ci,j
2dσ2

.

C.4 Proofs for Hierarchical Bandits

We begin by stating the complete proof.

Theorem C.10 (Complete statement of Theorem 4.4). For all ω ∈ ∆+
K , the expected PoE of PI-BAI using

allocation ω under the hierarchical bandit problem (9) is upper bounded as

Pn ≤
∑

i,j∈[K]
i ̸=j

1√
1 +

ci,j
σ̂n,i+σ̂n,j

e
−

(ν⊤bi−ν⊤bj)
2

2(∥bi−bj∥2Σ+σ2
0,i

+σ2
0,j

) ,

where

ci,j = V(µ̂n,i − µ̂n,j) =
σ4
0,i

(σ2
0,iωin + σ2)2

V(Bn,i) +
σ4
0,j

(σ2
0,jωjn + σ2)2

V(Bn,j) (30)

+
σ4

(σ2
0,iωin + σ2)2

∑
k∈[K]

(b⊤k Σ̆nbi)
2

(σ2 + ωknσ2
0,k

)2
V(Bn,k) +

σ4

(σ2
0,jωjn + σ2)2

∑
k∈[K]

(b⊤k Σ̆nbj)
2

(σ2 + ωknσ2
0,k

)2
V(Bn,k)

+
σ4

(σ2
0,iωin + σ2)2

∑
k∈[K]

∑
k′∈[K]\{k}

(b⊤k Σ̆nbi).(b
⊤
k′ Σ̆nbi)

(σ2
0,k

ωkn + σ2).(σ2
0,k′ωk′n + σ2)

cov(Bn,k, Bn,k′ )

+
σ4

(σ2
0,jωjn + σ2)2

∑
k∈[K]

∑
k′∈[K]\{k}

(b⊤k Σ̆nbj).(b
⊤
k′ Σ̆nbj)

(σ2
0,k

ωkn + σ2).(σ2
0,k′ωk′n + σ2)

cov(Bn,k, Bn,k′ )

−
2σ4

(σ2
0,iωin + σ2)(σ2

0,jωjn + σ2)

 ∑
k∈[K]

(b⊤k Σ̆nbi)(b
⊤
k Σ̆nbj)

(σ2 + ωknσ2
0,k

)2
V(Bn,k) +

∑
k∈[K]

∑
k′∈[K]\{k}

(b⊤k Σ̆nbi).(b
⊤
k′ Σ̆nbj)

(σ2
0,k

ωkn + σ2).(σ2
0,k′ωk′n + σ2)

cov(Bn,k, Bn,k′ )


−

2σ2
0,iσ

2
0,j

(σ2
0,iωin + σ2)(σ2

0,jωjn + σ2)
cov(Bn,i, Bn,j)

+
2σ2σ2

0,i

(σ2
0,iωin + σ2)2

 ∑
k∈[K]\{i}

b⊤k Σ̆nbi

(σ2
0,k

ωkn + σ2)
cov(Bn,k, Bn,i) +

b⊤i Σ̆nbi

(σ2
0,iωin + σ2)

V(Bn,i)


+

2σ2σ2
0,j

(σ2
0,jωjn + σ2)2

 ∑
k∈[K]\{j}

b⊤k Σ̆nbj

(σ2
0,k

ωkn + σ2)
cov(Bn,k, Bn,j) +

b⊤j Σ̆nbi

(σ2
0,jωjn + σ2)

V(Bn,j)


−

2σ2σ2
0,j

(σ2
0,iωin + σ2)(σ2

0,jωjn + σ2)

 ∑
k∈[K]\{j}

b⊤k Σ̆nbi

σ2 + ωknσ2
0,k

cov(Bn,k, Bn,i) +
b⊤j Σ̆nbi

σ2 + ωjnσ2
0,j

V(Bn,j)


−

2σ2σ2
0,i

(σ2
0,jωjn + σ2)(σ2

0,iωin + σ2)

 ∑
k∈[K]\{i}

b⊤k Σ̆nbj

σ2 + ωknσ2
0,k

cov(Bn,k, Bn,j) +
b⊤i Σ̆nbj

σ2 + ωinσ2
0,i

V(Bn,i)

 ,

where we defined Σ̆n from (15),

Σ̆−1
n = Σ−1 +

∑
k∈[K]

ωkn

σ2 + ωknσ2
0,k

bkb
⊤
k , V(Bn,k) = ωknσ

2 + ω2
kn

2(σ2
0,k + b⊤k Σbk)

cov(Bn,k, Bn,k′) = ωkωk′n2b⊤k Σbk′ .

Proof of Theorem C.10. This proof follows the same idea of the proof of Theorem 4.1. We first write Pn as

Pn =
∑

i,j∈[K]
i ̸=j

E [P (i∗(θ) = i | Jn = j,Hn)1{Jn = j}] .
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Following (19), by applying Hoeffding inequality for sub-Gaussian random variables,

P

(
argmax
k∈[K]

θk = i | Hn, Jn = j

)
≤ P (θi ≥ θj | Hn, Jn = j)

= P ((θi − θj)− (µ̂n,i − µ̂n,j) ≥ −(µ̂n,i − µ̂n,j) | Hn, Jn = j)

≤ exp

(
− (µ̂n,i − µ̂n,j)

2

2(σ̂2
n,i + σ̂2

n,j)

)
,

where µ̂n,i and σ̂2
n,i are given by (17). Taking the expectation with respect to the history Hn,

E [P(i∗(θ) = i | Jn = j,Hn)1{Jn = j}] ≤ E

[
e
−

(µ̂n,j−µ̂n,i)
2

2(σ̂2
n,i

+σ̂2
n,j

)

]
.

Since µ̂n,i − µ̂n,j ∼ N
(
E [µ̂n,i]− E [µ̂n,j ] ,V(µ̂n,i − µ̂n,j)

)
, applying Lemma C.5 gives

E

[
e
−

(µ̂n,j−µ̂n,i)
2

2(σ̂2
n,i

+σ̂2
n,j

)

]
=

1√
1 +

V(µ̂n,i−µ̂n,j)

σ̂2
n,i+σ̂2

n,j

exp

− (E [µ̂n,i]− E [µ̂n,j ])
2

2(σ̂2
n,i + σ̂2

n,j)

1

1 +
V(µ̂n,i−µ̂n,j)

σ̂2
n,i+σ̂2

n,j


Therefore,

E [P(i∗(θ) = i | Jn = j,Hn)] ≤
1√

1 +
V(µ̂n,i−µ̂n,j)

σ̂2
n,i+σ̂2

n,j

e
− (E[µ̂n,i]−E[µ̂n,j ])

2

2(σ̂2
n,i

+σ̂2
n,j

+V(µ̂n,i−µ̂n,j)) .

Now we want to simplify σ̂2
n,i + σ̂2

n,j + V(µ̂n,i − µ̂n,j). on one hand, by the law of total variance,

V(θi − θj) = E [V(θi − θj | Hn)] + V(E [θi − θj | Hn]) = σ̂2
n,i + σ̂2

n,j + V(µ̂n,i − µ̂n,j) ,

On the other hand,

V(θi − θj) = E [V(θi − θj | µ)] + V(E [θi − θj | µ]) = σ2
0,i + σ2

0,j + V((bi − bj)
⊤µ)

= σ2
0,i + σ2

0,j + ∥bi − bj∥2Σ .

Combining these two last equations gives σ̂2
n,i + σ̂2

n,j + V(µ̂n,i − µ̂n,j) = σ2
0,i + σ2

0,j + ∥bi − bj∥2Σ .

Therefore,

E [P(i∗(θ) = i | Jn = j,Hn)] ≤
1√

1 +
V(µ̂n,i−µ̂n,j)

σ̂2
n,i+σ̂2

n,j

e
− (E[µ̂n,i]−E[µ̂n,j ])

2

2(σ2
0,i

+σ2
0,j

+∥bi−bj∥2Σ) . (31)

Computing V(µ̂n,i − µ̂n,j).

The rest of the proof consists to compute E [µ̂n,i] and V(µ̂n,i − µ̂n,j) for (i, j). Denoting Q the latent prior
distribution µ ∼ Q and πHn

the law of Hn,

πHn
(Hn) = πHn

(YA1
, ..., YAn

)

=

∫∫
(θ,µ)

Lθ(YA1
, ..., YAn

)P0(θ | µ)Q(µ)dθdµ

=

∫∫
(θ,µ)

∏
i∈[K]

Lθi ((Yt)t∈Ti
)P0,i(θi | µ)Q(µ)dθidµ

=

∫
µ

 ∏
i∈[K]

∫
θi

N
(
(Yt)t∈Ti); θi1ωin, σ

2Iωin

)
N (θi; b

⊤
i µ, σ

2
0,i)dθi

Q(µ)dµ .
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From properties of Gaussian convolutions (Bishop, 2006),∫
θi

N
(
(Yt)t∈Ti

); θi1ωin, σ
2Iωin

)
N (θi; b

⊤
i µ, σ

2
0,i)dθi = N

(
(Yt)t∈Ti

); (b⊤i µ)1ωin, σ
2.Iωin + 1ωin1

⊤
ωinσ

2
0,i

)
.

Therefore, ∏
i∈[K]

∫
θi

N
(
(Yt)t∈Ti

); θi1ωin, σ
2Iωin

)
N (θi; b

⊤
i µ, σ

2
0,i)dθi

= N (Hn;
∑
i∈[K]

ei
(
RK
)
⊗

 ∑
t∈[ωin]

et (Rωin)⊗ b⊤i

⊗ µ, IK ⊗ (σ2Iωin + 1ωin1
⊤
ωinσ

2
0,i)) ,

where we define explicitly ei
(
RK
)

as the ith base vector of RK .

Therefore,

π(Hn) =

∫
µ

N (Hn;
∑
i∈[K]

ei
(
RK
)
⊗

( ∑
t∈ωin

et (Rωin)⊗ b⊤i

)
⊗ µ, IK ⊗ (σ2Iωin + 1ωin1

⊤
ωinσ

2
0,i))N (µ; ν,Σ)dµ

= N (Hn; µ̊, Σ̊) ,

where µ̊ ∈ Rn, Σ̊ ∈ Rn×n with

µ̊ =
∑
i∈[K]

ei
(
RK
)
⊗

( ∑
t∈ωin

et (Rωin)⊗ b⊤i

)
⊗ ν

Σ̊ = IK ⊗ (σ2Iωin + 1ωin1
⊤
ωinσ

2
0,i)

+

∑
i∈[K]

e
(
RK
)
⊗

 ∑
t∈[ωin]

et (Rωin)⊗ b⊤i

Σ

∑
i∈[K]

ei
(
RK
)
⊗

 ∑
t∈[ωin]

et (Rωin)⊗ b⊤i

⊤

. (32)

The covariance matrix Σ̊ seems complex but has a simple structure. The first term IK ⊗ (σ2Iωin + 1ωin1
⊤
ωinσ

2
0,i)

is the same as in the standard model. The remaining term accounts for the correlation between distinct arms
(i, j), and this correlation is of the form b⊤i Σbj .

Now we are ready to compute E [µ̂n,k] for any arm k ∈ [K]: from (16) and (17),

E [µ̂n,k] = E

[
σ̃2
n,k

(
µ̆⊤
n bk
σ2
0,k

+
Bn,k

σ2

)]
= E

[
σ2σ2

0,i

σ2
0,kωkn+ σ2

(
µ̆⊤
n bk
σ2
0,k

+
Bn,k

σ2

)]

=
σ2

σ2
0,kωkn+ σ2

E
[
µ̆⊤
n bk

]
+

σ2
0,k

σ2
0,kωkn+ σ2

E [Bn,k] .

From (15),

µ̆⊤
n bk =

ν⊤Σ−1 +
∑
i∈[K]

Bn,i

σ2 + ωinσ2
0,i

b⊤i

 Σ̆nbk = ν⊤Σ−1Σ̆nbk +
∑
i∈[K]

Bn,i

σ2 + ωinσ2
0,i

b⊤i Σ̆nbk .

By linearity,

E [µ̂n,k] =
σ2

σ2
0,kωkn+ σ2

ν⊤Σ−1Σ̆nbk +
∑
i∈[K]

E [Bn,i]

σ2 + ωinσ2
0,i

b⊤i Σ̆nbk

+
σ2
0,k

σ2
0,kωkn+ σ2

E [Bn,k] .

From Equation (32), E [Bn,i] = ωinν
⊤bi. Therefore,

E [µ̂n,k] =
σ2

σ2
0,kωkn+ σ2

ν⊤Σ−1Σ̆nbk +
∑
i∈[K]

ωinν
⊤bi

σ2 + ωinσ2
0,i

b⊤i Σ̆nbk

+
σ2
0,k

σ2
0,kωkn+ σ2

ωknν
⊤bk = ν⊤bk (33)
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Now we are ready to compute V(µ̂n,i − µ̂n,j) for any (i, j). From (33),

µ̂n,i − µ̂n,j =
σ2

σ2
0,iωin+ σ2

µ̆⊤
n bi +

σ2
0,i

σ2
0,iωin+ σ2

Bn,i −
σ2

σ2
0,jωjn+ σ2

µ̆⊤
n bj −

σ2
0,j

σ2
0,iωjn+ σ2

Bn,j

=
σ2

σ2
0,iωin+ σ2

ν⊤Σ−1Σ̆nbi −
σ2

σ2
0,jωjn+ σ2

ν⊤Σ−1Σ̆nbj︸ ︷︷ ︸
does not depend on observations

+
σ2

σ2
0,iωin+ σ2

.
∑

k∈[K]

Bn,k

ωknσ2
0,k + σ2

b⊤k Σ̆nbi︸ ︷︷ ︸
(1)

+
−σ2

σ2
0,jωjn+ σ2

.
∑

k∈[K]

Bn,k

ωknσ2
0,k + σ2

b⊤k Σ̆nbj︸ ︷︷ ︸
(2)

+
σ2
0,j

σ2
0,iωin+ σ2

Bn,i︸ ︷︷ ︸
(3)

+
−σ2

0,j

σ2
0,jωjn+ σ2

Bn,j︸ ︷︷ ︸
(4)

.

Since (1), (2),(3) and (4) are correlated,

V(µ̂n,i + µ̂n,j) = V ((1) + (2) + (3) + (4)) =

4∑
i=1

V((i)) +
4∑

i=1

4∑
j=1,j ̸=i

2cov((i), (j)) . (34)

We now compute each term of (34):

V((1)) =
σ4

(σ2
0,iωin + σ2)2

V

 ∑
k∈[K]

Bn,k

ωknσ2
0,k

+ σ2
b
⊤
k Σ̆nbi



=
σ4

(σ2
0,iωin + σ2)2

 ∑
k∈[K]

(b⊤k Σ̆nbi)
2

(σ2 + ωknσ2
0,k

)2
V(Bn,k) +

∑
(k,k′),k ̸=k′

cov

 Bn,k

σ2 + ωknσ2
0,k

b
⊤
k Σ̆nbi,

Bn,k′

σ2 + ωk′nσ2
0,k′

b
⊤
k′ Σ̆nbi




=
σ4

(σ2
0,iωin + σ2)2

 ∑
k∈[K]

(b⊤k Σ̆nbi)
2

(σ2 + ωknσ2
0,k

)2
V(Bn,k) +

∑
(k,k′),k ̸=k′

(b⊤k Σ̆nbi)(b
⊤
k′ Σ̆nbi)

(σ2 + ωknσ2
0,k

)(σ2 + ωk′nσ2
0,k′ )

cov(Bn,k, Bn,k′ )



V((2)) =
σ4

(σ2
0,jωjn + σ2)2

 ∑
k∈[K]

(b⊤k Σ̆nbj)
2

(σ2 + ωknσ2
0,k

)2
V(Bn,k) +

∑
(k,k′),k ̸=k′

(b⊤k Σ̆nbi)(b
⊤
k′ Σ̆nbj)

(σ2 + ωknσ2
0,k

)(σ2 + ωk′nσ2
0,k′ )

cov(Bn,k, Bn,k′ )

 ,

V((3)) =
σ4
0,i

(σ2
0,iωin + σ2)2

V(Bn,i)

V((4)) =
σ4
0,j

(σ2
0,jωjn + σ2)2

V(Bn,j) ,

cov((1), (2)) = −cov

 σ2

σ2
0,iωin + σ2

.
∑

k∈[K]

Bn,k

ωknσ2
0,k

+ σ2
b
⊤
k Σ̆nbi,

σ2

σ2
0,jωjn + σ2

.
∑

k∈[K]

Bn,k

ωknσ2
0,k

+ σ2
b
⊤
k Σ̆nbj


= −

σ4

(σ2
0,iωin + σ2)(σ2

0,jωjn + σ2)
cov

 ∑
k∈[K]

Bn,k

ωknσ2
0,k

+ σ2
b
⊤
k Σ̆nbi,

∑
k∈[K]

Bn,k

ωknσ2
0,k

+ σ2
b
⊤
k Σ̆nbj


= −

σ4

(σ2
0,iωin + σ2)(σ2

0,jωjn + σ2)

[ ∑
k∈[K]

(b⊤k Σ̆nbi)(b
⊤
k Σ̆nbj)

(σ2 + ωknσ2
0,k

)
V(Bn,k)

+
∑

(k,k′),k ̸=k′

(b⊤k Σ̆nbi)(b
⊤
k′ Σ̆nbj)

(σ2 + ωknσ2
0,k

)(σ2 + ωk′nσ2
0,k′ )

cov(Bn,k, Bn,k′ )
]

cov((3), (4)) = −cov

 σ2
0,i

σ2
0,iωin + σ2

Bn,i,
σ2
0,j

σ2
0,jωjn + σ2

Bn,j


= −

σ2
0,iσ

2
0,j

(σ2
0,iωin + σ2)(σ2

0,jωjn + σ2)
cov(Bn,i, Bn,j)

cov((1), (4)) = −cov

 σ2

σ2
0,iωin + σ2

.
∑

k∈[K]

Bn,k

ωknσ2
0,k

+ σ2
b
⊤
k Σ̆nbi,

σ2
0,j

σ2
0,jωjn + σ2

Bn,j


= −

σ2σ2
0,j

(σ2
0,iωin + σ2)(σ2

0,jωjn + σ2)
cov

 ∑
k∈[K]

Bn,k

σ2 + ωknσ2
0,k

b
⊤
k Σ̆nbi, Bn,j


= −

σ2σ2
0,j

(σ2
0,iωin + σ2)(σ2

0,jωjn + σ2)

 ∑
k∈[K]\{j}

b⊤k Σ̆nbi

σ2
0,k

ωkn + σ2
+

b⊤j Σ̆nbi

σ2
0,jωjn + σ2

V(Bn,j)

 .
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The remaining terms are obtained by symmetry. Finally, for any (i, j) :

V(Bn,i) = V

(∑
t∈Ai

Yt

)
= ωinσ

2 + ω2
i n

2(σ2
0,i + b⊤i Σbi)

cov(Bn,i, Bn,j) = cov

∑
t∈Ai

Yt,
∑
t∈Aj

Yt

 =
∑
t∈Ai

∑
t∈Aj

cov(Yt, Yt) = ωiωjn
2b⊤i Σbj .

Remark C.11 (Computing the upper bound for hierarchical bandit with Theorem 4.2). The reader can wonder
why transforming the hierarchical model into a linear model thanks to (10), and plug directly the transformed
prior and actions to the linear upper bound (Theorem 4.2). While this is what we do to optimize numerically the
bound, it is challenging to give explicit terms with this method. In fact, it would yield to the following upper
bound,

Pn ≤
∑

i,j∈[K]
i ̸=j

1√
1 +

∥b̄i−b̄j∥2
¯Covn

∥b̄i−b̄j∥2
Σ̄n

e
−

(ν̄⊤ b̄i−ν̄⊤ b̄j)
2

2(∥b̄i−b̄j∥2Σ̄ =
∑

i,j∈[K]
i ̸=j

1√
1 +

∥b̄i−b̄j∥2
¯Covn

∥b̄i−b̄j∥2
Σ̄n

e
−

(ν⊤bi−ν⊤bj)
2

2(∥bi−bj∥2Σ+σ2
0,i

+σ2
0,j

) ,

where

Σ̄n =

Σ̄ +
1

σ2

∑
i∈[K]

ωinb̄ib̄
⊤
i

−1

, ¯Covn =
1

σ4
Σ̄n

∑
i∈[K]

ωin(σ
2 + b̄iΣ̄b̄i)b̄ib̄

⊤
i +

∑
i,j∈[K]
i ̸=j

b̄iΣ̄b̄jωiωjn
2b̄ib̄

⊤
j

 Σ̄n .

However, computing ∥b̄i − b̄j∥2¯Covn
and ∥b̄i − b̄j∥2Σ̄n

is computationally challenging because it requires first to
compute Σ̄ with block-matrix inversion, then to recover the marginal and posterior covariances σ̃2

n,i, σ̆
2
n,i and σ̂2

n,i

from (15), (16) and (17).

C.5 Proof for Prior Misspecification

Proof of Lemma 4.5. Let’s denote as (µ̃n,i, σ̃
2
n,i) the posterior mean and variance of arm i when using the

misspecified priors N (µ̃0,i, σ̃
2
0), that is,

σ̃−2
n,i = σ̃−2

0 + niσ
−2 , µ̃n,i = σ̃2

n,i(σ̃
−2
0 µ0,i + σ−2Bn,i) ,

where we recall Bn,i =
∑

t∈Ti
Yt, where Ti = {t ∈ [n] : At = i} and |Ti = ni|. The user’s decision Jn is defined as

Jn = argmaxi∈[K] µ̃n,i. Then, for a fixed bandit θ ∈ RK ,

P(Jn ̸= i∗(θ) | θ) ≤ P
(
∃j ̸= i∗(θ) , µ̃n,j > µ̃n,i∗(θ) | θ

)
≤
∑
j∈[K]

P
(
µ̃n,j > µ̃n,i∗(θ) | θ

)
.

Then, using the misspecified posterior means formulas and the fact that we perform uniform allocations,

P
(
µ̃n,j > µ̃n,i∗(θ) | θ

)
= P

∑
t∈Ti

Yt −
∑

t∈Ti∗(θ)

Yt >
σ̃2
0,i

σ2
µ0,i∗(θ) −

σ̃2
0,i

σ2
µ0,i | θ

 .

Using Lemma 3 from Atsidakou et al. (2022), we can upper bound this latter probability as

P
(
µ̃n,j > µ̃n,i∗(θ) | θ

)
≤ exp

(
− 1

4σ2
0

(
σ̃2
0,i

σ2
µ0,i −

σ̃2
0,i∗(θ)

σ2
µ0,i∗(θ)

)2

− 1

2σ2
0

(
σ̃2
0,i

σ2
µ0,i −

σ̃2
0,i∗(θ)

σ2
µ0,i∗(θ)

)(
θi − θi∗(θ)

))
.

Considering all the possible i∗(θ) ∈ [K] and integrating with respect to bandit instances θi ∼ N (µ0,i, σ
2
0) with

Lemma C.5 gives the result.
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D ADDITIONAL EXPERIMENTS

In this section, we consider the two following settings (we set σ = 1 for both settings):

Random setting. For MAB, each µ0,i is sampled from U([0, 1]) and σ0,i’s are evenly spaced between 0.1 and
0.5. For linear bandits, each µ0,i is sampled from U([0, 1]) and Σ0 is a diagonal matrix whose entries are evenly
spaced between 0.1 and 0.5. For hierarchical bandits, νi ∼ U([−1, 1]) and Σ and Σ0 are diagonal with entries
evenly spaced in [0.1, 0.5].

Fixed setting. For MAB, each µ0,i’s are evenly spaced between 0 and 1, and σ0,i’s are evenly spaced between
0.1 and 0.5. For linear bandits, each µ0 is set flat, µ0 = (1, . . . , 1) and Σ0 is a diagonal matrix whose entries are
evenly spaced between 0.1 and 0.5. For hierarchical bandits, νi’s are evenly spaced between −1 and 1. Σ and Σ0

are diagonal with entries evenly spaced in [0.1, 0.5].

Note that the random setting corresponds to the setting used for Figure 2a.

D.1 Prior Misspecification

We conduct additional synthetic experiments in the standard Gaussian model (5), where we instantiate PI-BAI
with different allocations (uniform, optimized, G-optimal and warm-up allocations with TS) with misspecified
prior. We set all the parameters as in Section 6, that is, σ = 1, K = 10, σ0,i evenly spaced between 0.1 and 0.5
and µ0,i ∼ U([0, 1]). Then construct the misspecified prior mean as µ̃0 = µ0 + αu, where u ∼ N (0, IK). For the
variance misspecification, we set the true prior variance to σ0,i = 0.3 for all arms, then construct the misspecified
prior as σ̃0,i = σ0,i +α. Results are shown in Figure 5 (first row for prior misspecification, second row for variance
misspecification), where we let α vary from 0 (no misspecification) to 0.5. Overall, it shows that the effect of
prior misspecification vanishes as n increases, as expected (see Lemma 4.5), except for the TS warm-up. This is
because TS is more aggressive, that is, it does not explore suboptimal arms based on his prior belief, yielding to
long-term consequences when sticking to the same allocation rule.
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Figure 5: Average PoE of PI-BAI with varying budget and allocations (uniform, optimized, G-optimal and TS
warmed-up weights) for different level of mean misspecification (first row) and variance misspecification (second
row).

D.2 Additional Setting

We provide empirical results for the Fixed setting. All remaining parameters K, d and L are the same as in
Figure 2a of Section 6. Figure 6 shows that our methods outperform existing baselines in this setting.
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Figure 6: Average PoE with varying budgets for the Fixed setting: for MAB the µ0,i’s are evenly spaced between
0 and 1 and σ0,i’s are evenly spaced between 0.1 and 0.5. For linear bandits, each µ0,i is sampled from U([0, 1])
and Σ0 is a diagonal matrix whose entries are evenly spaced between 0.1 and 0.5. For hierarchical bandits,
νi ∼ U([−1, 1]) and Σ and Σ0 are diagonal with entries evenly spaced in [0.12, 0.52].

D.3 MovieLens Experiments

We provide more information on our MovieLens experiments in Figure 2a. The MovieLens dataset provides 1
million ratings ratings given by 6040 users to 3952 movies, forming a sparse rating matrix M of size 6, 040× 3, 952.
To learn a prior suitable for our algorithm, we complete M using alternating least squares with rank d = 5
(low-rank factorization), resulting in the decomposition M = U⊤V , where rows Ui and Vj represent user i
and movie j, respectively. We then construct a linear Gaussian prior (see Section 4.2) by setting the mean
µ0 = 1

3952

∑
i∈[3952] Vj and the covariance Σ0 = diag(v) where v ∈ Rd is the empirical variance of Vj for j ∈ [3952]

along each dimension. We use a subset of K = 100 randomly picked movies. In our experiments, the bandit
instances aren’t sampled from a Gaussian prior, but we learned a Gaussian prior that we employ in our algorithm.
Despite this mismatch, PI-BAI with such prior performs very well. Of course, the prior is very informative as
we used the whole dataset to learn it. But still, the bandit instances are not sampled from it. All results are
averaged over 104 rounds.

D.4 Logistic Bandits

We consider the Random and Fixed setting for K = 30 arms and d ∈ {3, 4}. As explained in Appendix B, We
use a Laplace approximation to estimate the posterior means. For the warmed-up allocations, we use TS with
Bernoulli-logistic likelihood (Chapelle and Li, 2012). The G-optimal design weights are obtained as if we face a
linear Gaussian bandit.

Figure 7 shows that the generalization of PI-BAI with G-optimal design allocations on has good performances
beyond linear settings.
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Figure 7: Average PoE with varying budgets for the Fixed setting and the Random setting in the GLB framework.

D.5 Choice of Baselines

A remark on TTTS. Top two sampling algorithms is a family of algorithms that is known to have good
performances in BAI. In Section 6, we used TS-TCI with β = 0.5 from Jourdan et al. (2022) and denoted it as
TTTS for sake of notation simplicity.
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Influence of elimination. We empirically compare the influence of using elimination on top of our methods.
The elimination procedure is the same as the one used in Atsidakou et al. (2022). There are ⌊log2(K)⌋ rounds,
and each lasts ⌊ n

R⌋ steps. At each round, we pull each remaining arm i ⌊ωin
R ⌋ times. At the end of the round,

half of arms are eliminated. These correspond to the arms that have the least posterior mean reward (so µ̂n,i in
the MAB setting). The allocation ω is then normalized to allocate more budget to remaining arms. Note that we
draft all observations at the end of each round, as it is the case in all methods that rely on successive halvings
(Atsidakou et al., 2022; Azizi et al., 2021; Karnin et al., 2013). Figure 8 shows that using elimination does not
give better performances, and hence we chose to not add these baselines in Section 6.
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Figure 8: Average PoE of PI-BAI instantiated with different weights with or without elimination in the MAB
setting.

D.6 Simple Regret

Figure 9 compares the performances of our methods based on the Bayesian simple regret (see discussion in
Appendix A). Overall, it shows that our method outperform existing baselines in terms of simple regret in the
Random and Fixed settings. We do not compare our method to Komiyama et al. (2023), since it is designed for
Bernoulli bandits.
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Figure 9: Average simple regret with varying budgets for fixed and randomized settings.

D.7 Hyperparameters

Warm-up length nw. We try different values of warm-up length nw for our warm-up policies. We emphasize
that methods based on TTTS require nw > K because each arm has to be pulled at the beginning. Figure 10
suggests picking nw = 2K for the warm-up with T3C and TSTCI, and nw = K for the warm-up with TS.
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Figure 10: Average PoE of PI-BAI instantiated with different warm-up policies for different warm-up lengths nw.

Choice of warm-up policy. We evaluate different warm-up policies,TS and two Top-Two algorithms, TSTCI and
T3C from Jourdan et al. (2022). The experiments shown in Figure 11 are run in the same setting as in Section 6,
with K = 10 arms in the MAB setting, and with K = 60 and d = 4 in the hierarchical setting. Figure 11 suggests
to pick TS as a warm-up policy for the MAB setting and meTS of Aouali et al. (2023) for the hierarchical setting.
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Figure 11: Average PoE of PI-BAI instantiated with different warm-up policies.

Mixture parameter α. We discuss the choice of the mixture parameter α in the settings presented in Section 6
and Appendix D.2. We recall that in the "Random setting", each µ0,i is sampled from U([0, 1]), whereas in the
"fixed setting", µ0,i are evenly spaced between 0 and 1. In both settings, σ0,i are evenly spaced from 0.1 to 0.5.
We recall that we use the heuristic αωopt

i + (1− α)
µ0,iσ0,i∑

k∈[K] µ0,kσ0,k
in our experiments. Figure 12 shows that for

the fixed setting, adding the vector µ0,iσ0,i∑
k∈[K] µ0,kσ0,k

helps improve the performances. This is not necessarily the
case in the random setting. We find that the best performance is reached at α ≈ 0.5.
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Figure 12: Average PoE of PI-BAI(ωopt) for different mixture parameter α.

D.8 Confidence Intervals on Sampled Instances

We show different type of confidence intervals in the Random and Fixed settings. In the first row of Figure 13, for
each instance, we repeat the experiments 100 times on a same bandit environment to get a probability of error.
Then, we sample 1000 different bandit instances and show one standard deviation of the resulting probability of
error. In the second row of Figure 13, we plot the PoE of each method subtracted by the PoE of the method
having the least PoE in each setting (PI-BAI(ωopt) in MAB, PI-BAI(ωG9opt) in linear bandits and PI-BAI(ωTS)
in hierarchical bandits).
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Figure 13: PoE of several methods (first row) and PoE of each method substracted by the PoE of the most
performing method in each setting (second row). For each instance, we repeat the experiments 100 times and we
average the results over 1000 instances. The confidence intervals show one standard deviation.

E COMPUTE RESSOURCES

All experiments have been run locally on a 2021 Mac Book Pro with 8 CPUs.
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