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ABSTRACT
We introduce Probabilistic Rank and Reward (PRR), a scalable

probabilistic model for personalized slate recommendation. Our

approach allows off-policy estimation of the reward in the scenario

where the user interacts with at most one item from a slate of 𝐾

items. We show that the probability of a slate being successful can

be learned efficiently by combining the reward, whether the user

successfully interacted with the slate, and the rank, the item that

was selected within the slate. PRR outperforms existing off-policy

reward optimizing methods and is far more scalable to large action

spaces. Moreover, PRR allows fast delivery of recommendations

powered by maximum inner product search (MIPS), making it suit-

able in low latency domains such as computational advertising.

CCS CONCEPTS
• Mathematics of computing→ Probabilistic algorithms; •
Information systems→ Similarity measures; • Computing
methodologies→ Neural networks.

KEYWORDS
Recommendation, Contextual Bandits

1 INTRODUCTION
Recommender systems (advertising, search, music streaming, etc.)

are becoming prevalent in society helping users navigate enormous

catalogs of items to identify those relevant to their interests. In

practice, recommender systems must optimize the content of an

entire section of the web page that the user is navigating. This

section is viewed as an ordered collection (or slate) of 𝐾 items

[2, 5, 26]. It often takes the form of a menu and the user can choose

to interact with one of its items. Both in academia and industry, A/B

tests are seen as the golden standard to measure the performance

of recommender systems. A/B tests enable us to directly measure

utility metrics that rely on interventions, being the slates shown

to the user. However, they are costly. Thus a clear need remains

for reliable offline procedures to propose candidate recommender

systems and consequently reduce the cost of A/B tests.

In this work, we propose a probabilisticmodel calledProbabilistic
Rank and Reward (PRR) for large-scale slate recommendation.

PRR addresses the following practical limitations of existing meth-

ods.

∗
Both authors contributed equally to this research.

1) Collaborative filtering and content-based recommender sys-

tems [17, 25] optimize proxy metrics of the reward. This

may lead to a striking gap between their offline evaluation

and the A/B test result [9].

2) Counterfactual estimators, which are often based on inverse

propensity scoring (IPS) [11], suffer high bias and variance

[26] in large-scale scenarios. Moreover, policy learning ob-

jectives for these estimators are mostly not suitable for

slates and large action spaces.

3) The decision rules produced by most existing methods do

not fit the engineering constraints for deployment in large-

scale, low-latency systems such as computational adver-

tising; they are either expensive or intractable. To address

these challenges, our paper makes the following contribu-

tions.

1. Problem formulation: We formalize the ubiquitous slate

recommendation setting where the user is shown a slate of 𝐾 items

and they can choose to interact with at most one of its items. After

that, the feedback consists of two signals: did the user successfully

interact with one of the items? Then if an item was interacted with,

which one was it? These are referred to by reward and rank, respec-

tively. Note that it is very common in practice that the user interacts

with at most one item in the slate. For example, in ad placement,

a click on an item causes the whole slate to disappear. As a result,

the user cannot click on the other items in that slate. Similarly, in

video recommendation, a click on a video to watch it reloads the

homepage and changes it. Most offline reward optimizing methods

do not consider this and assume that the user can interact with

multiple items in the slate.

2. Modeling the reward and rank: We propose a probabilistic

model (PRR) that combines both signals, the reward and rank.

This is important as both contain useful information about the

user interests and discarding one of them may lead to inferior

performance. Existing methods either use one signal or partially

combine the two by assuming that the reward is a function of the

rank and only use the latter.

3. Incorporating extra features: PRR distinguishes between

slate and item level features that contribute to an interaction with

the slate and one of its items, respectively. PRR also incorporates

that interactions can be predicted by engagement features that nei-

ther represent the user interests nor the recommended items. This

includes the slate size and the overall level of user activity and

engagement. While these features are not used in decision making,

incorporating them helps learn the user interests more accurately.
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Precisely, it allows differentiating between interactions that are

caused by the quality of recommendations and those that happen

due to overall user engagement. While the use of nuisance parame-

ters to enhance estimation quality is not novel, the distinctiveness

of our approach lies in the separation between user interest and

engagement features, coupled with their application to our specific

setting described above.

4. Fast decision making: PRR’s decision rule is reduced to

solving a maximum inner product search (MIPS). This allows fast

delivery of recommendations in large-scale tasks using approximate

MIPS algorithms [24]. Most existing reward optimizing methods

do not take into account this practical consideration and as such

propose expensive decision rules.

5. Experiments:We show empirically that PRR outperforms

commonly used baselines in terms of both empirical performance

and computational efficiency.

2 RELATEDWORK
A significant part of the classic recommender systems literature is

inspired by the Netflix prize [4] which formulated recommendation

as predicting item ratings in a matrix. A practitioner will often work

with rating datasets that include neither recommendations nor

rewards, but are suitable for collaborative filtering [25] or content-

based recommendation [17]. While interesting, these datasets and

problem formulations do not reflect the actual interactions between

the users and the recommender systems; they are only imperfect

proxies. In particular, the performance of an algorithm on these

problems and datasets may be very different from its actual A/B test

performance [9, Section 5.1]. Instead, off-policy, or offline, reward

optimizing recommendation approaches aim at directly optimizing

the reward using logged data summarizing the previous interactions

of users with the existing recommender system. These are also

different from on-policy, or online, approaches that we do not cover

in this work. Here the reward is learned offline using logged data.

Inverse Propensity Scoring (IPS). Here we assume that the rec-

ommender system is represented by a stochastic policy 𝜋 . That is,

given a user 𝑢, 𝜋 (· | 𝑢) is a probability distribution over the set of

items. Under this assumption, Dudík et al. [8] used inverse propen-

sity scoring (IPS) [11] to estimate the reward for recommendation

tasks with small action spaces. Unfortunately, IPS can suffer high

bias and variance in realistic settings such as slate recommendation.

The high variance of IPS is acknowledged and several fixes have

been proposed such as clipping, and self-normalization [10]. An-

other solution is doubly robust (DR) [8] which combines a reward

model with IPS to reduce the variance. DR relies on a reward model

and PRR can be integrated into it.

In slate recommendation, recent works made simplifying struc-

tural assumptions to reduce the variance. For instance, Li et al. [16]

restricted the search space by assuming that items contribute to

the reward individually. Similarly, Swaminathan et al. [26] assumed

that reward is additive w.r.t. unobserved and independent ranks.

The independence assumption is restrictive and can be violated in

many production settings. A relaxed assumption was proposed in

McInerney et al. [18] where the interaction with the ℓ-th item in the

slate, 𝑠ℓ , depends only on 𝑠ℓ , 𝑠ℓ−1 and its rank 𝑟ℓ−1. This sequential

dependence scheme is not sufficient to encode our setting where

the user views the whole slate at once and interacts with at most

one of its items. PRR is model-based as it does not use inverse

propensity scoring.

Direct Methods (DM). Here a reward model is learned and then

used to estimate the performance of the recommender system. Exist-

ing methods [13, 23] focus on single-item recommendation (slates

of size 1) and do not incorporate engagement features. Another

popular family related to direct methods is called click (or ranking)

models [6]. Click models are often represented as graphical mod-

els and as such define dependencies manually and are not always

scalable to large action spaces. Moreover, they do not incorporate

extra features that are available in recommendation since they were

primarily designed for search engine retrieval. Recently, Cief et al.

[7] used direct methods with pessimism in learning to rank. How-

ever, the models used in their work are not suitable for our scenario

where the user is presented with the entire slate simultaneously and

can interact with, at most, one item. To be precise, the dependent-

click and position-based models described in Cief et al. [7] allow

multiple clicks on the slate, making them unsuitable for our set-

ting. Moreover, the cascading models in Cief et al. [7], Kiyohara

et al. [15] assume that the user interacts with items sequentially.

That is, item 𝑠ℓ at position ℓ is examined only if item 𝑠ℓ−1 at the

previous position is examined but not clicked. This differs from our

setting, where all items are examined simultaneously (rather than

sequentially) and the user can click on, at most, one of them.

Policy Learning. Finding an optimal policy to implement in a

recommender system requires both estimating the expected reward

of policies (using either direct or IPS methods above) and then

searching the space of policies to find the one with the highest

expected reward (policy learning). The literature mainly focuses

on combining IPS with a softmax policy for single item recommen-

dation. Extending this to slates is challenging. In fact, it is tempting

to use factored softmax policies but this may cause the learned

policy to recommend slates with repeated items. This was acknowl-

edged in Chen et al. [5] that introduced a top-K heuristic to prevent

the collapse of the policy on a single item. The other alternative

is to model the policies using a Plackett-Luce distribution. Then,

the straightforward approach to solving the resulting optimization

problem involves using REINFORCE-style algorithms, which esti-

mate gradients by sampling a slate from the policy. However, naive

REINFORCE can be computationally expensive due to the O(𝑃)
cost of sampling from the policy and the high level of noise in

the gradient estimates. Therefore, recent papers [19, 20] proposed

methods to accelerate the optimization process. Precisely, Oost-

erhuis [19, 20] introduced lower variance gradient estimators by

assuming certain restrictive linear assumptions about the reward

function. Although this estimator is less noisy, the iteration cost

of the algorithm remains O(𝑃). However, convergence with fewer

iterations can be achieved in stochastic gradient descent (SGD) due

to the lower variance. In our case, policy learning is not needed as

the optimal policy of PRR falls out neatly to a MIPS task due to its

parametrization. Also, the training time scales with the slate size 𝐾

rather than the action space 𝑃 as we show later.

Decision Making. An important practical challenge is the design

of tractable decision rules that satisfy engineering constraints. In
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practice, we must quickly recover a slate of items 𝒔 given a context

vector 𝒙 . The optimal decision rule under either the IPS or DM

formulation amounts to solving argmax𝒔∈S𝐿(𝒙, 𝒔). Here 𝐿(𝒙, 𝒔)
might either be the reward estimate in DM or the policy in IPS.

However, the space of eligible slates S is combinatorially large.

Thus exhaustively searching the space of slates is untenable and

we must resort to finding good but implementable decision rules

rather than optimal ones. There are three main strategies for doing

this.

(A) Reducing the combinatorial search over S to a sorting op-

eration over a set of 𝑃 items.

(B) Two-stage systems that massively reduce candidate sets

with a pre-filtering operation.

(C) Fast approximate maximum inner product search (MIPS)

on which we focus in this work since it allows end-to-end

optimization as opposed to the two-stage scheme. Next, we

provide more detail for each solution.

(A) Reducing the combinatorial search to sorting: To accel-

erate decision making, existing methods moved the search space

from the combinatorially large set of slates S to the catalog of items

{1, . . . , 𝑃}. This is achieved by first associating a score for items

instead of slates and then recommending the slate composed of

the top-K items with the highest scores. This leads to a O(𝑃) deliv-
ery time due to finding the top-K items. Unfortunately, reducing

a combinatorial search to a sort is still unsuitable for low-latency

recommender systems with large catalogs. We present next the

common solution to improve this.

(B) Two-stage recommendation: Here we first generate a

small subset of potential item candidates P
sub
⊂ {1, . . . , 𝑃}, and

then select the top-K items in P
sub

leading to a O(|P
sub
|) delivery

time. This has two main shortcomings. First, the scoring model,

which selects the highest scoring items from P
sub

, does not directly

optimize the reward for the whole slate, and rather optimizes a

proxy offline metric for each item individually. This induces numer-

ous biases related to the layout of the slate such as position biases

where users tend to interact more often with specific positions [27].

Second, the candidate generation and the scoring models are not

necessarily trained jointly, which may lead to having candidates in

P
sub

that are not the highest scoring items.

(C) Maximum inner product search (MIPS): A practical ap-

proach to avoid the candidate generation step relies on approximate

MIPS algorithms. Roughly speaking, these algorithms are capable

of quickly sorting 𝑃 items in O(log 𝑃) as long as the scores of items

𝑎 ∈ {1, . . . , 𝑃} have the form 𝒖⊤𝜷𝑎 . Here 𝒖 ∈ R𝑑 is a 𝑑-dimensional

user embedding and 𝜷𝑎 ∈ R𝑑 is the 𝑑-dimensional embedding of

item 𝑎. This allows fast delivery of recommendation in roughly

O(log 𝑃) instead of O(𝑃) without any additional candidate gener-

ation step. PRR uses approximate MIPS algorithms [24] making

it suitable for extremely low-latency systems. We note that both

IPS and DM can lead to a MIPS-compatible recommender system if

the model (or the policy) is appropriately parametrized. However,

much of the existing literature neglect this important consideration.

In our case, decision making is reduced to a MIPS task and we use

fast approximate algorithms to solve it. This allows us to avoid the

two-stage scheme and its limitations.

Figure 1: Example of 3 slates of size 2 on a technology website. From
left to right are good, mixed and bad recommendations. 𝑅, 𝑟1, 𝑟2 de-
note the probabilities of no-click, click on the 1st and 2nd item,
respectively.

Summary of Limitations. Here we summarize the limitations of

existing methods.

(a) Poor estimation of the reward: this is due to the high

variance and bias of IPS, the incorrect assumptions of ex-

isting DM and their potential modeling bias (e.g., only a

single item is recommended, ignoring engagement features,

etc.).

(b) Policy learning for single items: extending existing ap-

proaches to slates is complicated.

(c) Slow decision making: the real-time response require-

ment is not respected by most existing methods. The two-

stage system is a remarkably pragmatic compromise. But

it poses some challenges as we explained before. MIPS is

a reliable practical alternative to two-stage systems but

existing methods are usually not MIPS compatible.

3 ALGORITHM
PRR is a binary rewardmodel that differentiates between item-level

and slate-level features. The former reflects the quality of the slate as

a whole while the latter is associated with the quality of individual

items in the slate. This allows PRR to predict whether the user will

interact with the slate (the reward) andwhich itemwill be interacted

with (the rank). To see this, we give an example of the output of

PRR in Figure 1. Here the user is interested in technology. Then

we show three slates of size 2. In the left panel, the slate consists

of two good
1
items: phone and microphone. The model predictions

(0.91, 0.06, 0.03) are the probabilities for no click, click on phone

and click on microphone, respectively. The probability of a click on

slate phone, microphone is higher than the other slates and is equal

to 0.09. For comparison, the panel in the middle contains a good

item (phone) in the prime first position but the shoe in the second

position, which is a poor match with the user interest in technology.

As a consequence, the probabilities become (0.94, 0.04, 0.01) for no
click, click on phone and click on shoe. In the right panel, we show

two poor items shoe and pillow resulting in the highest no-click

probability 0.97.

The goal is to establish the level of association of each item

(phone, microphone, shoe and pillow) with a particular user interest

(technology). At first glance, analyzing logs of successful and un-

successful recommendations is the best possible way to learn this

association. However, in practice, there are numerous factors that

influence the probability of a click other than the quality of recom-

mendations. In this example, the non-click probability of the good

recommendations (phone, microphone) is 0.91 (click probability of

0.09), while the non-click probability of the bad recommendations

(shoe, pillow) is 0.97 (click probability of 0.03). The change in the

1
Here a good item refers to a technology item.
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click probability from good to bad recommendations is relatively

modest at only 0.06. Thus the model must capture additional factors

that influence clicks.

To account for this, PRR incorporates a real-world observation

made by practitioners: typically the most informative features to

predict successful interactions are engagement features. These sum-

marize how likely the user is to interact with the slate independently

of the quality and relevance of its items to the user. This includes the

slate size, its visibility and the level of user activity and engagement.

While these features are strong predictors of interactions, they do

not provide any information about which items are responsible for

which interactions. In contrast, the recommendation features, which

include the user interests and the items shown in the slate, provide

a relatively modest signal for predicting interactions. But they are

very important for the recommendation task. Based on these ob-

servations, PRR leverages the engagement features to accurately

learn the parameters associated with the useful recommendation

features.

PRR also incorporates the information that different positions in

the slate may have different properties. Some positions may boost a

recommendation bymaking it more visible, and other positions may

lessen the impact of the recommendation. To see this, consider the

example in Figure 1, the probability of clicking on shoes increased

by 0.01 when placed in the prime first position (slate in the middle)

compared to placing it in the second position (slate in the right).

3.1 Setting
For any positive integer 𝑃 , we define [𝑃] = {1, 2, . . . , 𝑃}. Vectors
and matrices are denoted by bold letters. The 𝑖-th coordinate of a

vector 𝒙 is 𝑥𝑖 ; unless the vector is already indexed such as 𝒙 𝑗 , in

which case we write 𝑥 𝑗,𝑖 . Let 𝑨 ∈ R𝑃×𝑑 be a 𝑃 × 𝑑 matrix. Then

for any 𝑖 ∈ [𝑃], the 𝑑-dimensional vector corresponding to the 𝑖-th

row of 𝑨 is denoted by 𝑨𝑖 ∈ R𝑑 . Items are referenced by integers

so that [𝑃] denotes the catalog of 𝑃 items. We define a slate of size

𝐾 , 𝒔 = (𝑠ℓ )ℓ∈[𝐾 ] = (𝑠1, . . . , 𝑠𝐾 ), as a 𝐾-permutation of [𝑃], which
is an ordered collection of 𝐾 items from [𝑃]. The space of all slates
of size 𝐾 is denoted by S.

We consider a contextual bandit setting where the agent interacts

with users as follows. The agent observes a 𝑑𝑥 -dimensional context

vector 𝒙 ∈ X ⊆ R𝑑𝑥 . After that, the agent recommends a slate

𝒔 ∈ S, and then receives a binary reward 𝑅 ∈ {0, 1} and a list

of 𝐾 binary ranks [𝑟1, . . . , 𝑟𝐾 ] ∈ {0, 1}𝐾 that depend on both the

context 𝒙 and the slate 𝒔. The reward 𝑅 indicates whether the

user interacted with the slate 𝒔 and for any ℓ ∈ [𝐾] the rank 𝑟ℓ
indicates whether the user interacted with the ℓ-th item in the slate,

𝑠ℓ . The user can interact with at most one item in the slate, and thus

𝑅 =
∑
ℓ∈[𝐾 ] 𝑟ℓ . We let 𝑅 = 1 − 𝑅 so that 𝑅 + ∑ℓ∈[𝐾 ] 𝑟ℓ = 1. Then

the vector (𝑅, 𝑟1, . . . , 𝑟𝐾 ) ∈ R𝐾+1 has one non-zero entry which is

equal to one.

We assume that the context 𝒙 decomposes into two vectors

as 𝒙 = (𝒚, 𝒛) where 𝒚 ∈ R𝑑 ′ and 𝒛 ∈ R𝑑𝑧 . Here 𝒚 denotes the

engagement features that are useful for predicting the reward of

a slate, independently of its items and the user interests. On the

other hand, 𝒛 ∈ R𝑑𝑧 denotes the remaining features in the context

𝒙 , which summarize the user interests. The dimensions of 𝒛 and
𝒙 are varying as they can contain the list of previously viewed

𝑦

𝑧

𝑠1

𝑠2

𝑠𝐾

𝜃0

𝜃1

𝜃2

𝜃𝐾

𝑅

𝑟1

𝑟2

𝑟𝐾

Figure 2: A diagram of the PRR model.

items whose length may differ from one user to another. For this

reason, these dimensions are subscripted by 𝒛 and 𝒙 , respectively.
In contrast, to simplify the notation, the dimension of 𝒚, 𝑑′, is fixed
(although it can also be varying).We give a summary of our notation

in Table 2.

3.2 Modeling Rank and Reward
As we highlighted before, engagement features can be strong pre-

dictors of the reward of a slate independently of the quality of

its items. Thus a model using these features while discarding the

user interests might enjoy a high likelihood. But such a model is

useless for personalized recommendation as it does not learn the

user interests. This observation is often used to justify abandon-

ing likelihood-based approaches in favor of ranking. Instead, PRR
solves this issue by carefully incorporating both the engagement

features 𝒚, the user interests features 𝒛 and the whole slate 𝒔 to
predict interactions accurately. The vector (𝑅, 𝑟1, . . . , 𝑟𝐾 ) ∈ R𝐾+1
has exactly one non-zero entry which is equal to one. Thus we

model it using a categorical distribution. Precisely, the PRR model

has the following form

𝑅, 𝑟1, . . . , 𝑟𝐾 |𝒙, 𝒔 ∼ cat

(
𝜃0

𝑍
,
𝜃1

𝑍
, . . . ,

𝜃𝐾

𝑍

)
, (1)

where 𝑍 =
∑𝐾
𝑘=0

𝜃ℓ , cat() is the categorical distribution, 𝜃0 is the

score of no interaction with the slate and 𝜃ℓ is the score of interac-

tion with the ℓ-th item in the slate, 𝑠ℓ . The engagement features 𝒚
are used to produce the positive score 𝜃0 which is high if the chance

of no interaction with the slate is high, independently of its items.

It is defined as

𝜃0 = exp(𝒚⊤𝝓), (2)

where 𝝓 is a vector of learnable parameters of dimension 𝑑′ > 0.

Similarly, let ℓ ∈ [𝐾], the positive score 𝜃ℓ is associated with the

item in position ℓ in the slate, 𝑠ℓ , and is calculated in a way that

captures user interests, position biases, and interactions that occur

by accident. Precisely, given a slate 𝒔 = (𝑠ℓ )ℓ∈[𝐾 ] = (𝑠1, . . . , 𝑠𝐾 ) and
user interests features 𝒛, the score 𝜃ℓ has the following form

𝜃ℓ = exp{𝑔
𝚪
(𝒛)⊤𝚿𝑠ℓ } exp(𝛾ℓ ) + exp(𝛼ℓ ). (3)

Again this formulation is motivated by practitioners experience.

The quantity exp(𝛼ℓ ) denotes the additive bias for position ℓ ∈ [𝐾]
in the slate. It is high if there is a high chance of interaction with the
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ℓ-th item in the slate irrespective of how appealing it is to the user.

This quantity also explains interactions that are not associated at

all with the recommendation (e.g., clicks by accident). The quantity

exp(𝛾ℓ ) is the multiplicative bias for position ℓ ∈ [𝐾]. It is high
if a recommendation is boosted by being in position ℓ ∈ [𝐾]. To
see this, consider the example of ad placement and assume that we

recommend a large slate of the form (phone,..., microphone). Here

phone is placed in the first position while microphone is placed in

the last one. Now suppose that the user clicked on phone. Then from

a ranking perspective, we would assume that the user prefers the

phone over the microphone. However, the user might have clicked

on the phone only because it was placed in the top position. PRR
captures this through the multiplicative terms exp(𝛾ℓ ).

The main quantity of interest is the recommendation score

𝑔
𝚪
(𝒛)⊤𝚿𝑎 for 𝑎 ∈ [𝑃]. Here the vector 𝒛 ∈ R𝑑𝑧 represents the

user interests and the parameter vector 𝚿𝑠ℓ ∈ R𝑑 represents the

embedding of the ℓ-th item in the slate, 𝑠ℓ . The vector 𝒛 is first

mapped into a fixed size 𝑑-dimensional embedding space using

𝑔
𝚪
(·). The resulting inner product 𝑔

𝚪
(𝒛)⊤𝚿𝑠ℓ produces a positive

or negative score that quantifies how good 𝑠ℓ is to the user with

interests 𝒛. In practice, 𝒛 can be the sequence of previously viewed

items.

The PRR has multiple parameters 𝝓, 𝚪,𝚿, 𝛾ℓ , and 𝛼ℓ for ℓ ∈
[𝐾]. These are learned using the maximum likelihood principle

where we assume access to logged data D𝑛 of the form D𝑛 =

{𝒙𝑖 , 𝒔𝑖 , 𝑅𝑖 , 𝑟𝑖,1, . . . , 𝑟𝑖,𝐾 ; 𝑖 ∈ [𝑛]} , such that 𝒙𝑖 = (𝒚𝑖 , 𝒛𝑖 ) for any
𝑖 ∈ [𝑛]. With a slight abuse of notation, we will refer to the learned

parameters by 𝝓, 𝚪,𝚿,𝜸 ,𝜶 in the sequel. A neural network diagram

of the PRR mode is shown in Figure 2. It is enlightening to com-

pare PRR with a fully connected network, unlike a fully connected

network, only 𝑦 influences 𝜃0, and for 𝑙 > 0, only 𝑧 and 𝑠𝑙 influence

𝜃𝑙 . These restrictions have two positive impacts 1) it enables recom-

mendation by fast maximum inner product search, and 2) it reduces

variance as the recommendation task is reduced to estimating an

affinity between the user interests (𝑧) and each recommendable

item. It also has one negative impact, the assumptions that there

are no virtuous or detrimental combinations of recommendations

is made increasing bias.

3.3 Decision Making
From Equation 1, the probability of interaction with the slate is

𝑃 (𝑅 = 1 | 𝒙, 𝒔) = 1 − 𝑃 (𝑅 = 1 | 𝒙, 𝒔) = 1 − 𝜃0

𝑍
,= 1 − 𝜃0

𝜃0+
∑
ℓ ∈ [𝐾 ] 𝜃ℓ

.

Then, from Equation 2, 3, the decision rule follows as

argmax𝒔∈S𝑃 (𝑅 = 1 | 𝒙, 𝒔)

= argmin𝒔∈S
𝜃0

𝜃0 +
∑
ℓ∈[𝐾 ] 𝜃ℓ

(𝑖 )
= argmax𝒔∈S

∑︁
ℓ∈[𝐾 ]

𝜃ℓ ,

= argmax𝒔∈S
∑︁
ℓ∈[𝐾 ]

exp{𝑔
𝚪
(𝒛)⊤𝚿𝑠ℓ } exp(𝛾ℓ ) + exp(𝛼ℓ ) ,

(𝑖𝑖 )
= argmax𝒔∈S

∑︁
ℓ∈[𝐾 ]

exp{𝑔
𝚪
(𝒛)⊤𝚿𝑠ℓ } exp(𝛾ℓ ) , (4)

where (𝑖) and (𝑖𝑖) follow from the fact that both 𝜃0 and exp(𝛼ℓ )
are additive and do not depend on 𝒔. Our goal is to reduce decision

making to a MIPS task. Thus the parametric form 𝒖⊤𝜷 must be

satisfied, which means that the sum

∑
ℓ∈[𝐾 ] , the exponential in

exp{𝑔
𝚪
(𝒛)⊤𝚿𝑠ℓ } and the term exp(𝛾ℓ ) in Equation 4 need to be

removed. This is achieved by first sorting the position biases as

𝑖1, . . . , 𝑖𝐾 = argsort(𝛾) . (5)

This is done once since Equation 5 neither depend on the items nor

the user. Then MIPS is performed as

𝑠′
1
, . . . , 𝑠′𝐾 = argsort(𝑔

𝚪
(𝒛)⊤𝚿)1:𝐾 . (6)

Finally, the recommended slate 𝒔 = (𝑠1, 𝑠2, . . . , 𝑠𝐾 ) is obtained by

rearranging the items 𝑠′
1
, . . . , 𝑠′

𝐾
as

𝑠1, 𝑠2, . . . , 𝑠𝐾 = 𝑠′𝑖1 , 𝑠
′
𝑖2
, . . . , 𝑠′𝑖𝐾 . (7)

In other terms, we select the top-K items with the highest recom-

mendation scores 𝑔
𝚪
(𝒛)⊤𝚿𝑎 for 𝑎 ∈ [𝑃]. We then place the highest

scoring item into the best position, that is the position ℓ ∈ [𝐾]
with the largest value of 𝛾ℓ . Then the second-highest scoring item

is placed into the second-best position, and so on. The procedure in

Equation 6 ,5,7 is equivalent to the decision rule in Eq. (4). It is also

much more computationally efficient as Eq. (6) can be performed

roughly in O(log 𝑃) thanks to fast approximate MIPS algorithms

[24], while Equation 4 requires roughly O(𝑃𝐾 ). The time complex-

ity is also improved compared to ranking approaches byO(𝑃/log 𝑃).
This makes PRR scalable to huge action spaces.

Note that 𝝓,𝜶 are nuisance parameters as they are not needed for

decision making; only the recommendation scores 𝑔
𝚪
(𝒛)⊤Ψ𝑎 and

the multiplicative position biases exp(𝛾ℓ ) are used in the procedure

in Equation 6,5, 7. While not used in decision making, learning

these parameters is necessary to accurately predict the recommen-

dation scores. Also, including them in the model provides room for

interpretability in some cases.

To summarize, PRR has the following properties. 1) It models

the joint distribution of the reward and ranks (𝑅, 𝑟1, . . . , 𝑟𝐾 ) in the

simple formulation in Equation 1. 2) It makes use of engagement

features 𝒚 in order to help learn the recommendation signal more

accurately. 3) Its recommendation scores have a parametric form

that is suitable for MIPS, which allows fast decision making in

O(log 𝑃).
When compared to prior works, PRR is uniquely designed for

scenarios in which users examine the entire slate and can interact

with at most one of its items. This realistic and important setting

sets PRR apart from prior works. Additionally, PRR combines

the strengths of both reward and ranking approaches. Reward-

based methods [8] focus primarily on optimizing the reward signal,

aligning offline optimization with A/B test outcomes. However,

they overlook the rank signal, resulting in challenges for learning,

particularly in large-scale tasks. Conversely, ranking approaches

[22] rely on heuristics centered around proxy scores for individual

items, which may not accurately reflect A/B test results [9]. PRR
bridges these two paradigms by directly optimizing the reward

while also leveraging the rank signal.

4 EXPERIMENTS
We evaluate PRR using synthetic and real-world problems that

mimic the sequential interactions between users and recommender

systems. The other alternatives consist in either using information-

retrieval metrics or IPS. Unfortunately, the former is not aligned
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with online A/B test results, while the latter can suffer high bias

and variance in large-scale settings [1]. Next we briefly present our

experimental design while we defer further detail to the Appendix.

Goals. Our paper is tailored to the common scenario where the

user examines an entire slate and can interact with at most one

of its items. Accordingly, our experiments aim to demonstrate the

following. 1) The effectiveness of our model in this specific setting.

2) The benefit of combining both the reward and rank signals by

comparing PRR to other variants that solely employ one of these

signals. 3) The benefit of incorporating engagement features by

comparing PRR to a variant that excludes them.

4.1 Baselines
PRR optimizes the reward offline and thus we only compare it

to off-policy reward optimizing approaches. This does not include

collaborative filtering [25], content-based [17], or on-policy rein-

forcement learning methods [12]. Thus we mainly compare PRR
to the methods reviewed IPS and DM discussed in related work.

As existing DMs are crafted for scenarios that are different from

ours, detailed in our related work section (e.g., the user can click on

multiple items in the slate), we focus our comparison on IPS and

its variants. These methods are agnostic to the reward generation

process, unlike DMs that assume specific reward structures which

don’t apply to our setting. However, we include three DMs derived

from PRRwhich are used to validate some of our modeling assump-

tions. Finally, for completeness, we also include two widely used

click models, cascading models (CM) and position-based models

(PBM) [7, 15].

Variants of PRR: we consider three variants of PRR. First,
PRR-reward uses only the reward and ignores the rank. PRR-
reward is trained on both, successful and unsuccessful slates. Sec-

ond, PRR-rank only uses the rank and is consequently trained on

successful slates only. Finally, PRR-bias ignores the engagement

features 𝒚 and sets 𝜃0 = exp(𝜙) where 𝜙 is a scalar parameters (𝜙

replaces 𝒚⊤𝝓). Comparing PRR to PRR-reward and PRR-rank
is to show the benefits of combining both signals, while compar-

ing it to PRR-bias it to highlight the effect and importance of the

engagement features 𝒚. The three models are summarized below.

PRR-reward:

𝑅, 𝑟1, . . . , 𝑟𝐾 |𝒙, 𝒔 ∼ cat

(𝜃0

𝑍
,

∑𝐾
ℓ=1

𝜃ℓ

𝑍

)
, 𝑍 =

𝐾∑︁
ℓ=0

𝜃ℓ ,

PRR-rank:

𝑟1, . . . , 𝑟𝐾 | 𝒙, 𝒔 |cat

(𝜃1

𝑍
, . . . ,

𝜃𝐾

𝑍

)
, 𝑍 =

𝐾∑︁
ℓ=1

𝜃ℓ ,

PRR-bias:

𝑅, 𝑟1, . . . , 𝑟𝐾 |𝒙, 𝒔 ∼ cat

(𝜙
𝑍
,
𝜃1

𝑍
, . . . ,

𝜃𝐾

𝑍

)
, 𝑍=𝜙 +

𝐾∑︁
ℓ=1

𝜃ℓ .

where 𝜃0 and 𝜃ℓ for ℓ ∈ [𝐾] are defined in Equation 2 - 3 while

𝜙 ∈ R in PRR-bias is a learnable parameter.

Inverse propensity scoring:We also consider IPS estimators

of the expected reward of policies that are designed by removing

the preference bias of the logging policy 𝜋0 in data D𝑛 . This is

achieved by re-weighting samples using the discrepancy between

the learning policy 𝜋 and the logging policy 𝜋0 such as

𝑉 IPS

𝑛 (𝜋) =
1

𝑛

𝑛∑︁
𝑖=1

𝑅𝑖
𝜋 (𝒔𝑖 |𝒛𝑖 )
𝜋0 (𝒔𝑖 |𝒛𝑖 )

. (8)

This estimator is unbiased when 𝜋 and 𝜋0 have common support.

But it can be highly biased when this assumption is violated, which

is common in practice. It also suffers high variance. One way to

mitigate this is to reduce the action space from slates to items [16].

This is achieved by assuming that the reward 𝑅 is the sum of rank

𝑟1, . . . , 𝑟𝐾 , and that the ℓ-th rank, 𝑟ℓ , only depends on the item 𝑠ℓ
and its position ℓ . This allows estimating the expected reward of

the learning policy 𝜋 as

𝑉 IIPS (𝜋) = 1

𝑛

𝑛∑︁
𝑖=1

𝐾∑︁
ℓ=1

𝑟𝑖,ℓ
𝜋 (𝑠𝑖,ℓ , ℓ |𝒛𝑖 )
𝜋0 (𝑠𝑖,ℓ , ℓ |𝒛𝑖 )

, (9)

where 𝜋 (𝑎, ℓ |𝒛) and 𝜋0 (𝑎, ℓ |𝒛) are the marginal probabilities that

the learning policy 𝜋 and the logging policy 𝜋0 place the item 𝑎 in

position ℓ ∈ [𝐾] given user interests 𝒛, respectively. Note that in
practice computing these marginals is often intractable for both 𝜋

and 𝜋0; in which case approximation must be employed.

The next step is to optimize the estimator (𝑉 IPS

𝑛 (𝜋) or 𝑉 IIPS

𝑛 (𝜋))
to find the policy that will be used for decision making. To achieve

this, we need to parameterize the learning policy 𝜋 . Here we assume

that 𝜋 is parametrized as a factored softmax

𝜋 (𝒔 | 𝒛) = 𝜋Ξ,𝛽,𝐾 (𝒔 |𝒛) =
𝐾∏
ℓ=1

𝑝Ξ,𝛽 (𝑠ℓ |𝒛) , (10)

where 𝑝Ξ,𝛽 (𝑎 |𝒛) =
exp{𝑓

𝚵
(𝒛)⊤𝜷𝑎}∑

𝑎′∈[𝑃 ] exp{𝑓
𝚵
(𝒛)⊤𝜷𝑎′ }

,

where 𝜷𝑎 ∈ R𝑑 is the embedding of item 𝑎 and 𝑓
𝚵
maps user in-

terests 𝒛 ∈ R𝑑𝑧 into a 𝑑-dimensional embedding. Finally, 𝑉 IIPS

𝑛 (𝜋)
also requires the marginal probabilities 𝜋 (𝑎, ℓ |𝒛) and 𝜋0 (𝑎, ℓ |𝒛). In
our case, 𝜋 (𝑎, ℓ |𝒛) = 𝑝Ξ,𝛽 (𝑎 |𝒛) while we may need to approximate

𝜋0 (𝑎, ℓ |𝒛) depending on the logging policy. While convenient, fac-

tored policies have significant limitations. In particular, IIPS with

factored policies might cause the learned policy to converge to

selecting slates with repeated items, which is illegal. Thus to be fair

to IIPS, we use sampling without replacement in decision making.

Another alternative to mitigate this is the top-K heuristic [5] which

causes the probability mass in 𝜋Ξ,𝛽,𝐾 (𝒔 |𝒛) to be spread out over the
top-K high scoring items rather than a single one. We denote the

IIPS estimator combined with the top-K heuristic by top-K IIPS.

4.2 Synthetic Problems
We design a simulated A/B test protocol that takes different recom-

mender systems as input and outputs their respective reward. We

first define the problem instance consisting of the true parameters

(oracle) and the logging policy as {𝝓,𝚿,𝜸 ,𝜶 , 𝑔
𝚪
(·), 𝑃𝒚 (·), 𝑃𝒛 (·), 𝑃𝐾 (·)}

and 𝜋0. Here 𝑃𝒚 (·), 𝑃𝒛 (·), and 𝑃𝐾 (·) are the distributions of the en-
gagement features, the user interests features and the slate size,

respectively. Given the oracle, we produce offline training logs and

propensity scores {D,P} by running the logging policy 𝜋0 in our

simulated environment and observing its reward and rank. These

logs are then used to train PRR and the baselines. After training,
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Figure 3: The reward (y-axis) of methods in synthetic problems with
varying slate sizes (x-axis), number of items (columns) and logging
policies (rows). The shaded areas represent uncertainty and they are
small since we run long A/B tests with 𝑛test = 100k.

a simulated A/B test is used for testing. We defer a detailed de-

scription of our simulation environment for reproducibility to the

Appendix. For instance, we summarize in Figure 1 the data gen-

eration process while we present in Figure 2 the simulated A/B

test.

We consider two non-personalized logging policies. (a) uniform:
this policy samples uniformly without replacement 𝐾 items from

the catalog [𝑃]. That is 𝜋0 (𝒔 | 𝒛) = 1

𝑃 (𝑃−1) ...(𝑃−𝐾+1) for any slate

𝒔 ∈ S and any user interests 𝒛. The marginal distribution can be

computed in closed-form as 𝜋0 (𝑎, ℓ |𝒛) = 1/𝑃 . (b) top-K pop: this
policy samples without replacement 𝐾 items where the probabil-

ity of an item 𝑎 is proportional to the 𝐿2 norm of its embedding,

∥𝚿𝑎 ∥. This is based on the intuition that a large value of ∥𝚿𝑎 ∥
means that item 𝑎 is recommended more often and thus it is more

popular. We stress that this logging policy has access to the true

embeddings 𝚿 of the simulated environment (Figure 1). Here the

marginal distribution is intractable and we simply approximate is

as 𝜋0 (𝑎, ℓ |𝒛) ≈ ∥Ψ𝑎 ∥/
∑
𝑎′ ∥Ψ𝑎′ ∥ for IIPS.

In Figure 3, we report the average A/B test reward of PRR with

varying slate sizes, number of items and logging policies using

100k training samples. Overall, we observe that PRR outperforms

the baselines across the different settings. Next we summarize the

general trends of algorithms.

(a) Varying logging policy: models that use the reward only,

IPS and PRR-reward, favor uniform logging policies while

those that use only the rank, IIPS and PRR-rank perform

better with the top-K pop logging policy. PRR-bias dis-
cards the slate-level features 𝒚 and uses a single parameter

𝜙 for all slates. Thus PRR-bias benefits from uniform log-

ging policies as they allow learning𝜙 that works well across

all slates. Indeed, in Figure 3 the gap between PRR and

PRR-bias shrinks for the uniform logging policy. Finally,

the performance of PRR is relatively stable for both logging

policies.

(b) Varying slate size: the performance of models that use

the reward only, IPS and PRR-reward, deteriorates when
the maximum slate size increases. On the other hand, those

that use only the rank, IIPS and PRR-rank, benefit from
larger slates as this leads to displaying more item compar-

isons. The addition of the top-K heuristic improves the

performance of IIPS in some cases by spreading the mass

over different items, making it not only focus on retrieving

one but several high scoring items. However, the increase

in performance is not always guaranteed which might be

due to our choice of hyperparameters or our approximation

of the marginal distributions of policies. Finally, PRR per-

forms well across all slate sizes as it uses both the reward

and rank.

(c) Varying number of items: the models that use the rank

benefit from large slates. Here we observe that the increase

in performance is more significant for large catalogs. In

contrast, models that use only the reward suffer a drop in

performance when the number of items increases.

4.3 Session Completion Problems
We use the Twitch dataset [21] to evaluate PRR on user session

completion tasks. Roughly speaking, we process the dataset such

that each user 𝑢 has a list I𝑢 that contains the items that the user

interacted with. We randomly split these user-item interactions I𝑢
into two parts, Iview𝑢 and Ihide𝑢 . Iview𝑢 is observed while Ihide𝑢 is

hidden. The baselines are evaluated based on their ability to predict

the hidden session of a user Ihide𝑢 by only observing a part of it,

Iview𝑢 .

Logged dataD𝑛 is collected using the top-K pop logging policy.

In each iteration 𝑖 ∈ [𝑛], we randomly sample a user 𝑢𝑖 . Then,

we recommend a slate 𝒔𝑖 = (𝑠𝑖,ℓ )ℓ∈[𝐾 ] by sampling without re-

placement 𝐾 items with probabilities proportional to their popu-

larity, i.e., their number of occurrences in the dataset. After rec-

ommending 𝒔𝑖 = (𝑠𝑖,ℓ )ℓ∈[𝐾 ] , we construct a binary vector 𝑏𝑖 =

(I{𝑠𝑖,ℓ ∈Ihide𝑢 } )ℓ∈[𝐾 ] = (I{𝑠𝑖,1∈Ihide𝑢 } , I{𝑠𝑖,2∈Ihide𝑢 } , . . . , I{𝑠𝑖,𝐾 ∈Ihide𝑢 } ) ∈
R𝐾 . In other words, for any ℓ ∈ [𝐾], 𝑏𝑖,ℓ = 1 if the ℓ-th item in the

slate, 𝑠𝑖,ℓ , is in the hidden user-item interaction Ihide𝑢 , and 𝑏𝑖,ℓ = 0

otherwise. This binary vector 𝑏𝑖 is then used to generate the reward

and rank signals 𝑅𝑖 , 𝑟𝑖,1, . . . , 𝑟𝑖,𝐾 for user 𝑢𝑖 and slate 𝒔𝑖 . This allows
constructing logged data D𝑛 . After training the baselines on D𝑛 ,
they are evaluated following the data collection process except that

they make decisions instead of the logging policy 𝜋0. More details

about the data generation and testing processes are given in the

Appendix.

In Figure 4 (left-hand side), we report the results of PRR and

the baselines on user session completion tasks. Note that there are

no engagement features in this problem. Thus PRR is the same as

PRR-bias and hence we only includePRR in Fig. 4. Furthermore, in

our synthetic problems, we used implementations of the cascading

models (CM) and position-based models (PBM), assuming a binary

context 𝒛, which was appropriate for those instances. However, this

session completion problem encompasses non-binary contexts, and

thus these models have been omitted from Fig. 4. It’s important to

highlight that CM and PBM are not the most competitive baselines

in our synthetic problems and are not well-suited for our specific

setting. Overall, PRR outperforms the other baselines in the session

completion problem. We also observe that PRR-reward has good
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Figure 4: On the left-hand side, we report the reward (y-axis) of
methods in session completion problems with varying slate sizes
(x-axis). On the right-hand side, we report the training time (y-axis)
of PRR and baselines in session completion problems with varying
catalog sizes (x-axis).

Table 1: Properties of PRR and the baselines.

Method Computational Empirical
efficiency performance

PRR O(𝐾) High

PRR-bias O(𝐾) Medium

PRR-rank O(𝐾) Medium

PRR-reward O(𝐾) Low

IPS O(𝑃) Low

IIPS O(𝑃) Medium

Top-K IIPS O(𝑃) Medium

performance in this scenario, while all the other methods have

comparable performance which is lower than that of PRR-reward.

4.4 Computational Efficiency
We assess the training speed of the algorithms with respect to the

catalog and slate sizes 𝑃 and 𝐾 . First, PRR and its variants compute

𝐾 + 1 scores 𝜃0, . . . , 𝜃𝐾 and normalize them using 𝑍 =
∑𝐾
ℓ=0

𝜃ℓ .

Therefore, evaluating PRR and its variants in one data-point costs

roughlyO(𝐾), wherewe omit the cost of computing the scores since

it is the same for all algorithms. In contrast, IPS and its variants

compute a softmax over the catalog. This requires computing the

normalization constant

∑
𝑎′∈[𝑃 ] exp{𝑓

𝚵
(𝒛)⊤𝜷𝑎′ } in Equation 10.

Thus the evaluation cost of IPS and its variants is roughly O(𝑃).
This is very costly compared to O(𝐾) in realistic settings where

𝑃 ≫ 𝐾 . An additional consideration to compare the training speed

of algorithms is whether they use successful slates only, which

significantly reduces the size of training data. Taking this into

account, the fastest of all algorithms is the PRR-rank since its

evaluation speed is O(𝐾) and it is trained on successful slates only.

In our experiments, PRR-rank is ≈ 20× faster to train than IPS.
These computational dependencies on 𝐾 and 𝑃 are also highlighted

in Figure 4 (right-hand side). In particular, IPS training time scales

linearly in 𝑃 while PRR do not have such a dependency on 𝑃 .

4.5 Limitations of PRR
After presenting and evaluating our algorithm, we are in a position

to discuss its limitations.

(a) Modeling capacity: PRR is trained to predict the reward

of any slate which is a complex task. Thus high-dimensional

embeddings might be needed to make accurate and cali-

brated predictions. As a result, the MIPS task produced by

PRR might require high dimensional embeddings that do

not conform to engineering constraints. A possible path to

mitigate this is to observe that accurately predicting the

reward is sufficient but not necessary for the recommenda-

tion task. When recommending, we only need to find the

best slate. This is a simpler task and might be achieved with

much smaller embeddings than those required by PRR.
Therefore, one can train PRR with high-dimensional em-

beddings. Then optimize policies parametrized with low-

dimensional embeddings using the learned reward esti-

mates of PRR instead of IPS. The learned policy that fits

the engineering constraints will be then used in decision

making.

(b) Incorporating prior information: we learned the pa-

rameters of PRR using the maximum likelihood principle.

While powerful, this does not allow incorporating prior

information about actions and users into our model. There-

fore, a natural extension of PRR is to use a Bayesian ap-

proach by adding a prior distribution that captures similar-

ities between actions [3].

(c) Theoretical analysis: one of the main appeals of IPS is

that it can be analyzed theoretically. This is difficult for

PRR although a Bayesian analysis where we assume that

the model of the environment is the same as that of PRR
might be possible [3].

5 CONCLUSION
We present PRR, a scalable probabilistic model for personalized

slate recommendation. PRR efficiently estimates the probability of

a slate being successful by combining the reward and rank signals.

It also optimizes the reward of the whole slate by distinguishing

between slate-level and item-level features. Experiments attest that

PRR outperforms the baselines and it is far more scalable, in both

training and decision making.

As a parametric model PRR is based upon assumptions, in par-

ticular, the user engagement, user interest and recommended items

are restricted in their ability to influence the no click or click on a

particular item probability (see Figure 2). Lifting these assumptions

would be a promising avenue for research, and this would open the

door to models that allow virtuous or detrimental combinations

of recommendations. Any model that considers these interactions

must identify novel ways to a) deal with the massive increase in

variance from measuring the combinatorial explosion in possible

interaction effects, and b) solve a combinatorial optimization prob-

lem at recommendation time. We leave these important questions

to future work.
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A SUMMARY OF NOTATION
We provide a summary of our notation in Table 2.

Table 2: Notation.

Notation Definition
𝒙 = (𝒚, 𝒛) ∈ R𝑑𝑥 context.

𝒚 ∈ R𝑑 ′ engagement features.

𝒛 ∈ R𝑑𝑧 user interests features.

𝑅 ∈ {0, 1} reward indicator.

𝑅 ∈ {0, 1} regret indicator.

𝑟ℓ ∈ {0, 1} rank indicator of the item in position ℓ ∈ [𝐾].
𝝓 ∈ R𝑑 ′ engagement parameters.

𝛾ℓ ∈ R multiplicative position bias in position ℓ ∈ [𝐾].
𝛼ℓ ∈ R additive position bias in position ℓ ∈ [𝐾].
𝑔
𝚪
(𝒛) ∈ R𝑑 user embedding.

𝚿 ∈ R𝑃×𝑑 items embeddings.

𝜃0 ∈ R score for no-interaction with the slate.

𝜃ℓ ∈ R score for an interaction with the item in position ℓ ∈ [𝐾].
𝒔 = (𝑠1, ..., 𝑠𝐾 ) slate of 𝐾 recommendations 𝑠ℓ ∈ [𝑃] for any ℓ ∈ [𝐾].

B EXPERIMENTAL DESIGN
Here we give more information about our experiments. We start

with the synthetic problems and then present the session comple-

tion problems.

B.1 Synthetic Problems
We design a simulated A/B test protocol that takes different recom-

mender systems as input and outputs their respective reward. We

first define the problem instance consisting of the true parameters

(oracle) and the logging policy as {𝝓,𝚿,𝜸 ,𝜶 , 𝑔
𝚪
(·), 𝑃𝒚 (·), 𝑃𝒛 (·), 𝑃𝐾 (·)}

and 𝜋0. Here 𝑃𝒚 (·), 𝑃𝒛 (·) and 𝑃𝐾 (·) are the distributions of the en-
gagement features, the user interests features and the slate size,

respectively. Given the oracle, we produce offline training logs

and propensity scores {D,P} by running the logging policy 𝜋0 as

described in Algorithm 1. These logs are then used to train PRR
and competing baselines. After training, the simulated A/B test in

Algorithm 2 is used for testing.

In all our experiments, the true parameters are sampled randomly

as

𝝓 ∼ N(𝜇𝜙 , Σ𝜙 ) , 𝚿 ∼ N(𝜇𝜓 , Σ𝜓 ) , 𝚪 ∼ N(𝜇Γ, ΣΓ) ,
𝜸 ∼ N(𝜇𝛾 , Σ𝛾 ) , 𝜶 ∼ N(𝜇𝛼 , Σ𝛼 ) .

For each user, the engagement features 𝒚 are sampled randomly

following the distribution 𝑃𝒚 = N(𝜇𝑦, Σ𝑦). For the interest features
𝒛, we assume that there are 𝐿 topics and 𝒛 is consequently generated
as follows. For each user 𝑢, we randomly sample the number of

topics that interest user 𝑢 as 𝐿𝑢 ∼ 1 + P𝑜𝑖𝑠𝑜𝑛(3). After that, we
uniformly sample 𝐿𝑢 topics that interest the user from [𝐿]. It follows
that 𝒛 ∈ R𝐿 (𝑑𝑧 = 𝐿) is represented as a binary vector such as

𝑧ℓ = 1 if the user is interested in topic ℓ , and 𝑧ℓ = 0 otherwise.

For simplicity, the mapping 𝑔
𝚪
is linear and defined as 𝑔

𝚪
(𝒛) = 𝚪𝒛.

Finally, for each user, the slate size is sampled uniformly from [𝐾]
where 𝐾 is the maximum slate size. For reproducibility, the SEED
is fixed at 42 which was chosen randomly. We considered realistic

settings with relatively large catalogs and slates. The catalog size

varies between 1000 and 10000 and the slate size varies between 2

and 8. PRR is suitable for larger catalogs but the baselines become

very slow to train. This explains our choice of 10000 as a maximum

catalog size. In optimization, we use Adam [14] with a learning rate

of 0.005 for 100 epochs using mini-batches of size 516.

Algorithm 1: Synthetic training logs
Input: oracle parameters

{𝝓,𝚿,𝜸 ,𝜶 , 𝑔
𝚪
(·), 𝑃𝒚 (·), 𝑃𝒛 (·), 𝑃𝐾 (·)}, logging policy

𝜋0 (𝒔 | 𝒙), marginal logging policies

𝜋0 (𝑠1 |𝒙), . . . , 𝜋0 (𝑠𝐾 |𝒙), number of training samples

𝑛train.

Output: logs D, propensity scores P.
D ← { } , P ← { }
for 𝑖 = 1, . . . , 𝑛train do

𝒚𝑖 ∼ 𝑃𝒚 (·) , 𝒛𝑖 ∼ 𝑃𝒛 (·) , 𝐾𝑖 ∼ 𝑃𝐾 (·)
𝒔𝑖 = (𝑠𝑖,1, . . . , 𝑠𝑖,𝐾𝑖 ) ∼ 𝜋0 (·|𝒛𝑖 )
𝜃0 ← exp(𝒚⊤

𝑖
𝝓)

for ℓ = 1, . . . , 𝐾𝑖 do
𝜃ℓ ← exp(𝑔

𝚪
(𝒛𝑖 )⊤𝚿𝑠𝑖,ℓ ) exp(𝛾ℓ ) + exp(𝛼ℓ )

end

𝑅𝑖 , 𝑟𝑖,1, . . . , 𝑟𝑖,𝐾 ∼ cat

(
𝜃0

𝑍
,
𝜃1

𝑍
, . . . ,

𝜃𝐾
𝑍

)
, 𝑍 =

∑𝐾𝑖
ℓ=0

𝜃ℓ

D ← D ∪ {𝒙𝑖 , 𝒔𝑖 , 𝑅𝑖 , 𝑟𝑖,1, . . . , 𝑟𝑖,𝐾 }
P ← P ∪ {𝜋0 (𝒔𝑖 |𝒛𝑖 ), 𝜋0 (𝑠𝑖,1, 1|𝒛𝑖 ), . . . , 𝜋0 (𝑠𝑖,𝐾 , 𝐾 |𝒛𝑖 )}

end

Algorithm 2: Synthetic A/B test

Input: oracle parameters

{𝝓,𝚿,𝜸 ,𝜶 , 𝑔
𝚪
(·), 𝑃𝒚 (·), 𝑃𝒛 (·), 𝑃𝐾 (·)}, decision rules

𝑑a and 𝑑b, number of testing samples 𝑛test.

Output: lists of rewards 𝑅a and 𝑅b.

𝑅a ← { } , 𝑅b ← { }
for 𝑖 = 1, . . . , 𝑛test do

𝒚𝑖 ∼ 𝑃𝒚 (·) , 𝒛𝑖 ∼ 𝑃𝒛 (·) , 𝐾𝑖 ∼ 𝑃𝐾 (·)
for m ∈ {a, b} do

𝒔𝑖 = (𝑠𝑖,1, . . . , 𝑠𝑖,𝐾𝑖 ) ← 𝑑m (𝒚𝑖 , 𝒛𝑖 ) (where 𝑑m is the

decision rule of m ∈ {a, b})
𝜃0 ← exp(𝒚⊤

𝑖
𝝓)

for ℓ = 1, . . . , 𝐾𝑖 do
𝜃ℓ ← exp(𝑔

𝚪
(𝒛𝑖 )⊤𝚿𝑠𝑖,ℓ ) exp(𝛾ℓ ) + exp(𝛼ℓ )

end
𝑅m ← 𝑅m ∪ {1 − 𝜃0

𝑍
} , 𝑍 =

∑𝐾𝑖
ℓ=1

𝜃ℓ

end
end

B.2 Session Completion Problems
We use the Twitch dataset [21] to evaluate PRR on user session

completion tasks. For each user, we randomly split the user-item

interactions I𝑢 into two parts, an observed part by the baselines

Iview𝑢 and a hidden one Ihide𝑢 that should be predicted. The task is

to complete the observed user session Iview𝑢 to retrieve the whole

session of a user I𝑢 . Logged data D𝑛 is collected using the top-
K pop logging policy as follows. In each iteration 𝑖 ∈ [𝑛], we
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randomly sample a user 𝑢𝑖 . Then, we recommend a slate 𝒔𝑖 by
sampling without replacement 𝐾 items with probabilities propor-

tional to their popularity. Precisely, the probability of selecting

an item 𝑎 is 𝑐𝑎/
∑
𝑎′ 𝑐𝑎′ where 𝑐𝑎 is the number of occurrences

of item 𝑎 in the dataset. After that, we construct a binary vector

𝑏𝑖 = (I{𝑠𝑖,1∈Ihide𝑢𝑖
} , I{𝑠𝑖,2∈Ihide𝑢𝑖

} , . . . , I{𝑠𝑖,𝐾 ∈Ihide𝑢𝑖
} ) ∈ R𝐾 . In other

words, for any ℓ ∈ [𝐾], 𝑏𝑖,ℓ = 1 if the ℓ-th item in the slate, 𝑠𝑖,ℓ , is

in the hidden user-item interaction Ihide𝑢 , and 𝑏𝑖,ℓ = 0 otherwise.

This binary vector 𝑏𝑖 is then used to generate the reward and rank

signals as

𝑅𝑖 , 𝑟𝑖,1, . . . , 𝑟𝑖,𝐾 ∼ cat (𝑝0, 𝑝1, . . . , 𝑝𝐾 ) , (11)

where 𝑝0 =
𝛽0𝐾

𝛽0𝐾+
∑
ℓ ∈ [𝐾 ] 𝛽ℓ𝑏𝑖,ℓ

and 𝑝𝑘 =
𝛽𝑘𝑏𝑖,𝑘

𝛽0𝐾+
∑
ℓ ∈ [𝐾 ] 𝛽ℓ𝑏𝑖,ℓ

for 𝑘 ∈
[𝐾]. Here 𝛽0 and 𝛽ℓ for ℓ ∈ [𝐾] are sampled from N(3, 9) and
Uniform( [16]), respectively. This allows us to generate a dataset

in the form

D𝑛 = {Iview𝑢𝑖
, 𝒔𝑖 , 𝑅𝑖 , 𝑟𝑖,1, . . . , 𝑟𝑖,𝐾 ; 𝑖 ∈ [𝑛]} .

Here Iview𝑢𝑖
can be seen as the user interest features. This data

generation process is summarized in Algorithm 3.

Algorithm 3: Session completion training logs

Input: set of𝑈 users, set of 𝑃 items, user-item interactions

Iview𝑢 and Ihide𝑢 for any user 𝑢 ∈ [𝑈 ], number of

occurrences 𝑐𝑎 for any item 𝑎 ∈ [𝑃], maximum slate

size 𝐾 , position biases 𝛽ℓ for ℓ ∈ [𝐾], logging policy

𝜋0, number of training samples 𝑛train.

Output: logs D, propensity scores P.
D ← { } , P ← { }
for 𝑖 = 1, . . . , 𝑛train do

𝑢𝑖 ∼ Uniform( [𝑈 ])
𝐾𝑖 ∼ Uniform( [𝐾])
𝒔𝑖 = (𝑠𝑖,1, . . . , 𝑠𝑖,𝐾𝑖 ) ∼ 𝜋0 (· | Iview𝑢𝑖

)
𝑏𝑖 = (I{𝑠𝑖,1∈Ihide𝑢𝑖

} , I{𝑠𝑖,2∈Ihide𝑢𝑖
} , . . . , I{𝑠𝑖,𝐾 ∈Ihide𝑢𝑖

} )
generate 𝑅𝑖 , 𝑟𝑖,1, . . . , 𝑟𝑖,𝐾 as in Eq. (11)

D ← D ∪ {Iview𝑢𝑖
, 𝒔𝑖 , 𝑅𝑖 , 𝑟𝑖,1, . . . , 𝑟𝑖,𝐾 }

P ← P ∪
{𝜋0 (𝒔𝑖 |Iview𝑢𝑖

), 𝜋0 (𝑠𝑖,1, 1|Iview𝑢𝑖
), . . . , 𝜋0 (𝑠𝑖,𝐾 , 𝐾 |Iview𝑢𝑖

)}
end

After training the baselines on D𝑛 , they are evaluated following

the data collection process except they are run instead of the logging

policy 𝜋0.

Algorithm 4: Session completion A/B test

Input: set of𝑈 users, set of 𝑃 items, user-item interactions

Iview𝑢 and Ihide𝑢 for any user 𝑢 ∈ [𝑈 ], number of

occurrences 𝑐𝑎 for any item 𝑎 ∈ [𝑃], maximum slate

size 𝐾 , position biases 𝛽ℓ for ℓ ∈ [𝐾], logging policy

𝜋0, number of testing samples 𝑛test.

Output: lists of rewards 𝑅a and 𝑅b.

𝑅a ← { } , 𝑅b ← { }
for 𝑖 = 1, . . . , 𝑛test do

𝑢𝑖 ∼ Uniform( [𝑈 ])
𝐾𝑖 ∼ Uniform( [𝐾])
for m ∈ {a, b} do

𝒔𝑖 = (𝑠𝑖,1, . . . , 𝑠𝑖,𝐾𝑖 ) ← 𝑑m (Iview𝑢𝑖
) (𝑑m is the

decision rule of m ∈ {a, b})
𝑏𝑖 = (I{𝑠𝑖,1∈Ihide𝑢𝑖

} , I{𝑠𝑖,2∈Ihide𝑢𝑖
} , . . . , I{𝑠𝑖,𝐾 ∈Ihide𝑢𝑖

} )
generate 𝑅𝑖 , 𝑟𝑖,1, . . . , 𝑟𝑖,𝐾 as in Eq. (11)

𝑅m ← 𝑅m ∪
{ ∑

ℓ ∈ [𝐾 ] 𝛽ℓ𝑏𝑖,ℓ
𝛽0𝐾+

∑
ℓ ∈ [𝐾 ] 𝛽ℓ𝑏𝑖,ℓ

}
end

end
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